Thermoeconomic Analysis of a Combined Natural Gas Cogeneration System With a Supercritical CO2 Brayton Cycle and an Organic Rankine Cycle

2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Zhen Pan ◽  
Mingyue Yan ◽  
Liyan Shang ◽  
Ping Li ◽  
Li Zhang ◽  
...  

Abstract This paper proposes a new type of Gas Turbine Cycle-supercritical CO2 Brayton/organic Rankine cycle (GT-SCO2/ORC) cogeneration system, in which the exhaust gas from gas-fired plants generates electricity through GT and then the remaining heat is absorbed by the supercritical CO2 (SCO2) Brayton cycle and ORC. CO2 contained in the exhaust gas is absorbed by monoethanolamine (MEA) and liquefied via liquified natural gas (LNG). Introducing thermodynamic efficiencies, thermoeconomic analysis to evaluate the system performance and total system cost is used as the evaluation parameter. The results show that the energy efficiency and exergy efficiency of the system are 56.47% and 45.46%, respectively, and the total cost of the product is 2798.38 $/h. Moreover, with the increase in air compressor (AC) or gas turbine isentropic efficiency, GT inlet temperature, and air preheater (AP) outlet temperature, the thermodynamic efficiencies have upward trends, which proves these four parameters optimize the thermodynamic performance. The total system cost can reach a minimum value with the increase in AC pressure ratio, GT isentropic efficiency, and AC isentropic efficiency, indicating that these three parameters can optimize the economic performance of the cycle. The hot water income increases significantly with the increase in the GT inlet temperature, but it is not cost-effective in terms of the total cost.

2021 ◽  
Author(s):  
Fabrizio Reale ◽  
Raniero Sannino ◽  
Raffaele Tuccillo

Abstract Waste heat recovery (WHR) can represent a good solution to increase overall performance of energy systems, even more in case of small systems. The exhaust gas at the outlet of micro gas turbines (MGTs) has still a large amount of thermal energy that can be converted into mechanical energy, because of its satisfactory temperature levels, even though the typical MGT layouts perform a recuperated cycle. In recent studies, supercritical CO2 Brayton Cycle (sCO2 GT) turbines were studied as WHR systems whose thermal source was the exhausts from gas turbines. In particular, subject of this study is the 100 kW MGT Turbec T100. In this paper, the authors analyze innovative layouts, with comparison in terms of performance variations and cogenerative indices. The study was carried out through the adoption of a commercial software, Thermoflex, for the thermodynamic analysis of the layouts. The MGT model was validated in previous papers while the characteristic parameters of the bottoming sCO2 GT were taken from the literature. The combined cycle layouts include simple and recompression sCO2 bottoming cycles and different fuel energy sources like conventional natural gas and syngases derived by biomasses gasification. A further option of bottoming cycle was also considered, namely an organic Rankine cycle (ORC) system for the final conversion of waste heat from sCO2 cycle into additional mechanical energy. Finally, the proposed plants have been compared, and the improvement in terms of flexibility and operating range have been highlighted.


Author(s):  
Mortaza Yari

This study examines the performance of a gas-cooled nuclear power plant with closed Brayton cycle (CBC) combined with an organic Rankine cycle (ORC) plant, as well as the irreversibility within the system. Individual models have been developed for each component, through applications of the first and second laws of thermodynamics. The overall system performance is then analyzed by employing individual models and further application of thermodynamic laws for the entire cycle, to evaluate the thermal efficiency and entropy production of the plant. The effects of the turbine inlet temperature, compressor pressure ratio, evaporator temperature, and temperature difference in the evaporator on the combined cycle first-law, second-law efficiency and exergy destruction rate are studied. Finally optimization of the combined cycle in a systematic way has been developed and discussed. It was found that the combined cycle first-law efficiency is about 9.5–10.1% higher than the simple CBC cycle. Also, the exergy destruction rate for the GT-MHR/ORC combined cycle, is about 6.5–8.3% lower than that of the GT-MHR cycle.


Author(s):  
Kuifang Wan ◽  
Yunhan Xiao ◽  
Shijie Zhang

By adding an induced draft fan or exhaust compressor between flue gas condenser and stack to make the turbine expand to a pressure much lower than ambient pressure, this paper actually employed inverted Brayton cycle to solve stack temperature problems after water recovery from Humid Air Turbine (HAT) cycle exhaust gas and compare the effect of different discharging methods on the system’s performance. Comparing with the methods of gas discharged directly or recuperated, this scenario can obtain the highest electrical efficiency under certain pressure ratio and turbine inlet temperature. Due to the introduction of induced draft fan, in spite of one intercooler, there are twice intercoolings during the whole compression since the flue gas condenser is equivalent to an intercooler but without additional pressure loss. So the compression work decreases. In addition, the working pressure of humidifier and its outlet water temperature are lowered for certain total pressure ratio to recover more exhaust heat. These enhance the electrical efficiency altogether. Calculation results show that the electrical efficiency is about 49% when the pressure ratio of the induced draft fan is 1.3∼1.5 and 1.5 percentage points higher than that of HAT with exhaust gas recuperated. The specific works among different discharging methods are very closely. However, water recovery is some extent difficult for HAT employing inverted Brayton cycle.


Sign in / Sign up

Export Citation Format

Share Document