High performance computation of radiative transfer equation using the finite element method

2018 ◽  
Vol 360 ◽  
pp. 74-92 ◽  
Author(s):  
M.A. Badri ◽  
P. Jolivet ◽  
B. Rousseau ◽  
Y. Favennec
2016 ◽  
Vol 138 (6) ◽  
Author(s):  
L. Zhang ◽  
J. M. Zhao ◽  
L. H. Liu

A new stabilized finite element formulation for solving radiative transfer equation is presented. It owns the salient feature of least-squares finite element method (LSFEM), i.e., free of the tuning parameter that appears in the streamline upwind/Petrov–Galerkin (SUPG) finite element method. The new finite element formulation is based on a second-order form of the radiative transfer equation. The second-order term will provide essential diffusion as the artificial diffusion introduced in traditional stabilized schemes to ensure stability. The performance of the new method was evaluated using challenging test cases featuring strong medium inhomogeneity and large gradient of radiative intensity field. It is demonstrated to be computationally efficient and capable of solving radiative heat transfer in strongly inhomogeneous media with even better accuracy than the LSFEM, and hence a promising alternative finite element formulation for solving complex radiative transfer problems.


2011 ◽  
Vol 40 (7) ◽  
pp. 1117-1121
Author(s):  
马文娟 MA Wenjuan ◽  
高峰 GAO Feng ◽  
朱苹苹 ZHU Pingping ◽  
易茜 YI Xi

1993 ◽  
Vol 21 (2) ◽  
pp. 120-134 ◽  
Author(s):  
M. Weiss ◽  
S. Tsujimoto ◽  
H. Yoshinaga

Abstract The influence of five belt constructions on high speed endurance, ride comfort, and rolling resistance was investigated for a high performance 225/50R16 92V radial passenger car tire, using the finite element method. The belt constructions were combinations of belt edge shapes (cut, folded) and reinforcement materials (steel, aramid). The goal was to find optimized belt constructions for tire weight reduction, considering important tire properties like high speed endurance, ride comfort, and rolling resistance. A full aramid belt construction with a folded belt around a cut belt was chosen for design parameter variation calculations to reduce rolling resistance. This leads to a tire with smaller belt width, increased folding width, additional center cap ply, and reduced non-skid base and depth. The effect of inflation pressure and speed on rolling resistance was evaluated for this construction.


Sign in / Sign up

Export Citation Format

Share Document