rolling resistance
Recently Published Documents


TOTAL DOCUMENTS

968
(FIVE YEARS 283)

H-INDEX

33
(FIVE YEARS 6)

10.6036/10345 ◽  
2022 ◽  
Vol 97 (1) ◽  
pp. 13-13
Author(s):  
OSCAR CUADRADO SEMPERE ◽  
DAVID CLAR GARCIA ◽  
MIGUEL SANCHEZ LOZANO

Regulations R(EC)661/2009 and R(EC)1222/2009 established environmental requirements for new tires and their labeling, not applicable in principle to retreaded tires. However, in anticipation of future revisions, different studies were promoted, mainly oriented to truck tires, the main market for retreading. Two lines of research were opened at UMH, focused respectively on the study of rolling resistance and rolling noise.


2021 ◽  
Author(s):  
Carl Lenngren ◽  
Maria Hernandez

Asset management of infrastructure is fundamental for maintenance planning and preservation of common property. A robust testing program is needed to assess the present-day status and for proper actions in time to minimize the ongoing depreciation of value. As a matter of fact, Portland Cement Concrete pavements show very little deterioration even after many years in service. Thus, it may be difficult to accurately predict the present asset value, other than using linear relations to the presumed design life. The primary reason for failure is cracking in concrete pavements, so assessing the dissipated energy from the load-deformation relation from a given load could be utilized for the purpose. The dissipated energy, i.e. the work data can be assessed by a falling weight deflectometer test, mimicking the passing of a truck or aircraft wheel load. In the present study, dynamic field data are evaluated, and the input data needed for the fracture mechanics model are used to predict the pavement life regarding cracking. To predict fracture energy and assess rolling resistance as well in concrete pavements, we need to consider the energy balance of the pavement system. To assess dissipated energy, falling weight deflectometer time histories are used to evaluate the pavement contribution to rolling resistance. Such analyses include all layers in the structure including the subgrade, so in the present case a way of sorting the dissipation at various depths is investigated. Field data were collected from a site, at mid-life of the predicted design life. The failure was confirmed several years later, and the remaining life was compared with the assumption that the dissipated energy near the edge was enough to initiate the cracks within the actual time to failure. Conversely, the dissipation at the mid-slab position was below the limit. The data from the field test were also used as an input for a finite element model to see if it was viable to further improve the prediction. The method seems to be promising, but more data are needed as the present set only represents the mid-life status.


Author(s):  
M. L. Larsen ◽  
J. Cesbron ◽  
F. Anfosso-Lédée ◽  
C. Ropert ◽  
J. C. Dyre ◽  
...  

In this paper, a versatile drum setup for measuring rolling resistance of small wheels is presented. The purpose is to provide a flexible setup for testing of models for rolling resistance under controlled circumstances. To demonstrate this, measurements of rolling resistance with a series of sandpapers of different grit sizes representing surface textures were carried out. The measurements show a clear increase in the rolling-resistance coefficient with increasing surface roughness, rolling speed and load. Numerical calculations in the time domain for a visco-elastic contact model run on equivalent surfaces agree with the trends found experimentally. We conclude that this approach to simplifying the experiment in order to obtain a high degree of control, accuracy and repeatability is useful for validating and testing models for calculating the rolling resistance for a given surface texture.


2021 ◽  
Vol 8 (4) ◽  
pp. 369-379
Author(s):  
Greg Wheatley ◽  
Ashley Rains ◽  
Mohammad Zaeimi

Low Rolling Resistance (LRR) conveyor systems are generally preferred over traditional conveyors because of better overall efficiency lesser energy consumption required to operate. In this work, the design development and analysis path in the process of downscaling the size of an existent LRR test rig to a compact, portable and desktop-sized model is presented. Simulation has been developed using SolidWorks and finite element analysis is conducted using ANSYS to obtain the deformation, stress and strain of each part of the new design.


Author(s):  
K. V. Moiseev ◽  
◽  
A. I. Popenov ◽  
R. N. Bakhtizin ◽  
◽  
...  

The paper presents the results of experimental study of the tribotechnical properties of lubricants on a unit that simulates the geometric, kinematic and force similarity of well drilling conditions. Bearings with different radial clearances and the same chemical-thermal treatment were investigated. Data registration was carried out on cathode, loop oscilloscopes and electronic recorders. The load on the bearing, the moment of rolling resistance on the journal, and the angular speed of rotation of the outer race were recorded. The temperature was registered using artificial and semiartificial thermocouples. A strobotachometer was used to determine the portable speed of the rolling bodies. The external appearance of all rolling elements was investigated, metallographic analysis of thin surface layers of all rolling elements was carried out, mathematical processing of test results was carried out. It is shown that for the express assessment of the tribotechnical properties of lubricants, the amplitude value of the oscillation of the rolling resistance moment can be used. Keywords: friction; lubrication; tribotechnical Properties; drilling.


2021 ◽  
Vol 67 (No. 4) ◽  
pp. 190-198
Author(s):  
Milan Helexa ◽  
Ján Kováč ◽  
Jozef Krilek

The article focuses on the research of tyre rolling resistances in the soil test channel environment. The specific monitored tyre was a Mitas TS05 10.0/75-15.3 10PR diagonal tyre with an arrow tread. The measurement itself was divided into two stages. In the first stage, measurements of rolling resistance were performed on a solid concrete base of the laboratory in order to determine the internal component of rolling resistance of the tyre. In the second stage, rolling resistances were monitored on forest soil deposited in the main body of the soil channel. The mentioned measurements of rolling resistance can be considered key for further evaluation of traction and energy properties of tyres. Despite some complications which occurred during the measurement, the results obtained indicate the conclusions reached by other researchers in the field. The main conclusion of this research is to confirm the justification of using the correct or optimal level of inflation pressures of tyres of mobile energy means depending on the properties of the surfaces on which they move in order to reduce not only their energy intensity but also greater environmental acceptability.


2021 ◽  
Author(s):  
Marcos Arroyo ◽  
◽  
Riccardo Rorato ◽  
Marco Previtali ◽  
Matteo Ciantia ◽  
...  

Contact rolling resistance is the most widely used method to incorporate particle shape effects in the discrete element method (DEM). The main reason for this is that such approach allows for using spherical particles hence offering substantial computational benefits compared to non-spherical DEM models. This paper shows how rolling resistance parameters for 3D DEM models can be easily calibrated with 2D sand grain images.


Author(s):  
Linsheng Wang ◽  
Donghe Xi

Most of the vehicle cruise braking calibration algorithms only calibrate the distance, ignoring that the driver cannot control the vehicle braking in time under fatigue conditions. Therefore, an embedded CNC system is added to the vehicle cruise braking distance calibration algorithm to control the vehicle speed and prevent the vehicle from rear-end collisions. At this time, the CNC system uses incremental control to control the vehicle cruise braking. The reaction time model and braking distance calculation model under control increment are established. At the same time, air resistance and rolling resistance of cruise braking distance parameters are calculated. Cruise braking distance calibration is completed by integrating the two models, CNC system control increment, air resistance and rolling resistance parameters. The experimental analysis shows that the calibration error of the algorithm is within ±30cm and the calibration accuracy is high, which meets the practical application standard of cruise braking.


2021 ◽  
Vol 65 (2) ◽  
pp. 107-128
Author(s):  
Saima Yaqoob ◽  
Johan Silfwerbrand ◽  
Larissa Strömberg

Abstract Concrete and asphalt are the two competitive materials for a highway. In Sweden, the predominant material for the highway system is asphalt. But under certain conditions, concrete pavements are competitive alternatives. For example, concrete pavements are suitable for high-traffic volume roads, roads in tunnels, concentrated loads (e.g., bus stops and industrial pavement). Besides the load-carrying capacity, the concrete pavement has many advantages such as durability (wear resistance), resistance against frost heave, environment (pollution, recycling, and low rolling resistance leading to fuel savings), fire resistance, noise limitations, brightness, evenness and aesthetics. Concrete pavements are long-lasting but need final repair. Single slabs may crack in the jointed concrete pavement due to various structural and non-structural factors. Repair and maintenance operations are, therefore, necessary to increase the service life of the structures. To avoid extended lane closures, prevent traffic congestions, and expedite the pavement construction process, precast concrete technology is a recent innovative construction method that can meet the requirement of rapid construction and rehabilitation of the pavement. This paper evaluates rapid repair techniques of concrete pavement using precast concrete technology by analysing three case studies on jointed precast concrete pavements. The study showed that the required amount of time to re-open the pavement to traffic is dramatically reduced with jointed precast concrete panels.


Sign in / Sign up

Export Citation Format

Share Document