scholarly journals A recursive system-free single-step temporal discretization method for finite difference methods

2021 ◽  
pp. 100098
Author(s):  
Youngjun Lee ◽  
Dongwook Lee ◽  
Adam Reyes
2020 ◽  
Author(s):  
Zhonghao Mao ◽  
Guanghua Guan ◽  
Zheli Zhu

<p>Canal automatic control is an important tool to improve the management level of water distribution systems, while an important method to evaluate the effect is controller is using numerical simulations. The free-surface flow in such system can be modelled using the Saint-Venant equations, while the regulating gates are usually treated as inner boundaries where gate discharge formula is adopted. In the previous research, the Saint-Venant equations are normally discretized using the implicit finite difference methods because of their accuracy and simplicity. However, it is difficult to incorporate the inner boundary conditions in the computation of implicit method. To circumvent this problem, this paper presents a hybrid discretization method, which adopts the state-of-art finite volume methods at regulating gates and finite difference methods elsewhere. This new discretization method can preserve the computational speed advantage of finite difference method and capture the wave propagation near the regulating gates. Which can provide reliable evidence for the design of controllers.</p>


Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Xu-Qian Fan ◽  
Wenyong Gong

Abstract Path planning has been widely investigated by many researchers and engineers for its extensive applications in the real world. In this paper, a biharmonic radial basis potential function (BRBPF) representation is proposed to construct navigation fields in 2D maps with obstacles, and it therefore can guide and design a path joining given start and goal positions with obstacle avoidance. We construct BRBPF by solving a biharmonic equation associated with distance-related boundary conditions using radial basis functions (RBFs). In this way, invalid gradients calculated by finite difference methods in large size grids can be preventable. Furthermore, paths constructed by BRBPF are smoother than paths constructed by harmonic potential functions and other methods, and plenty of experimental results demonstrate that the proposed method is valid and effective.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 206
Author(s):  
María Consuelo Casabán ◽  
Rafael Company ◽  
Lucas Jódar

This paper deals with the search for reliable efficient finite difference methods for the numerical solution of random heterogeneous diffusion reaction models with a finite degree of randomness. Efficiency appeals to the computational challenge in the random framework that requires not only the approximating stochastic process solution but also its expectation and variance. After studying positivity and conditional random mean square stability, the computation of the expectation and variance of the approximating stochastic process is not performed directly but through using a set of sampling finite difference schemes coming out by taking realizations of the random scheme and using Monte Carlo technique. Thus, the storage accumulation of symbolic expressions collapsing the approach is avoided keeping reliability. Results are simulated and a procedure for the numerical computation is given.


2020 ◽  
Vol 63 (1-2) ◽  
pp. 143-170 ◽  
Author(s):  
Amit K. Verma ◽  
Sheerin Kayenat ◽  
Gopal Jee Jha

Sign in / Sign up

Export Citation Format

Share Document