Positive end-expiratory pressure titrated according to respiratory system mechanics or to ARDSNetwork table did not guarantee positive end-expiratory transpulmonary pressure in acute respiratory distress syndrome

2018 ◽  
Vol 48 ◽  
pp. 433-442 ◽  
Author(s):  
Joerg Krebs ◽  
Paolo Pelosi ◽  
Patricia R.M. Rocco ◽  
Michael Hagmann ◽  
Thomas Luecke
2019 ◽  
Vol 12 ◽  
pp. 117954761984218 ◽  
Author(s):  
Mukul Pandey ◽  
Dhiren Gupta ◽  
Neeraj Gupta ◽  
Anil Sachdev

Manipulation of positive end-expiratory pressure (PEEP) has been shown to improve the outcome in pediatric acute respiratory distress syndrome (PARDS), but the “ideal” PEEP, in which the compliance and oxygenation are maximized, while overdistension and undesirable hemodynamic effects are minimized, is yet to be determined. Also, for a given level of PEEP, transpulmonary pressure (TPP) may vary unpredictably from patient to patient. Patients with high pleural pressure who are on conventional ventilator settings under inflation may cause hypoxemia. In such patients, raising PEEP to maintain a positive TPP might improve aeration and oxygenation without causing overdistension. We report a case of PARDS, who was managed using real-time esophageal pressure monitoring using the AVEA ventilator and thereby adjusting PEEP to maintain the positive TPP.


2020 ◽  
Author(s):  
Lorenzo Viola ◽  
Emanuele Russo ◽  
Marco Benni ◽  
Emiliano Gamberini ◽  
Alessandro Circelli ◽  
...  

Abstract Since its outbreak, in January, 2020, it has been clear that CoVID-19 pneumonia is atypical. Despite a full concordance to Berlin criteria for Acute Respiratory Distress Syndrome (ARDS), respiratory system mechanics is preserved [1]. Mechanical ventilation and muscular paralysis are recommended in worsening respiratory insufficiency [2]; in a substantial number of cases, prone positioning significantly improves oxygenation.


2014 ◽  
Vol 121 (3) ◽  
pp. 572-581 ◽  
Author(s):  
Massimo Cressoni ◽  
Davide Chiumello ◽  
Eleonora Carlesso ◽  
Chiara Chiurazzi ◽  
Martina Amini ◽  
...  

Abstract Background: It has been suggested that higher positive end-expiratory pressure (PEEP) should be used only in patients with higher lung recruitability. In this study, the authors investigated the relationship between the recruitability and the PEEP necessary to counteract the compressive forces leading to lung collapse. Methods: Fifty-one patients with acute respiratory distress syndrome (7 mild, 33 moderate, and 11 severe) were enrolled. Patients underwent whole-lung computed tomography (CT) scan at 5 and 45 cm H2O. Recruitability was measured as the amount of nonaerated tissue regaining inflation from 5 to 45 cm H2O. The compressive forces (superimposed pressure) were computed as the density times the sternum-vertebral height of the lung. CT-derived PEEP was computed as the sum of the transpulmonary pressure needed to overcome the maximal superimposed pressure and the pleural pressure needed to lift up the chest wall. Results: Maximal superimposed pressure ranged from 6 to 18 cm H2O, whereas CT-derived PEEP ranged from 7 to 28 cm H2O. Median recruitability was 15% of lung parenchyma (interquartile range, 7 to 21%). Maximal superimposed pressure was weakly related with lung recruitability (r 2 = 0.11, P = 0.02), whereas CT-derived PEEP was unrelated with lung recruitability (r 2 = 0.0003, P = 0.91). The maximal superimposed pressure was 12 ± 3, 12 ± 2, and 13 ± 1 cm H2O in mild, moderate, and severe acute respiratory distress syndrome, respectively, (P = 0.0533) with a corresponding CT-derived PEEP of 16 ± 5, 16 ± 5, and 18 ± 5 cm H2O (P = 0.48). Conclusions: Lung recruitability and CT scan–derived PEEP are unrelated. To overcome the compressive forces and to lift up the thoracic cage, a similar PEEP level is required in higher and lower recruiters (16.8 ± 4 vs. 16.6 ± 5.6, P = 1).


Sign in / Sign up

Export Citation Format

Share Document