scholarly journals Forming two-dimensional structure of DNA-functionalized Au nanoparticles via lipid diffusion in supported lipid bilayers

2014 ◽  
Vol 401 ◽  
pp. 494-498 ◽  
Author(s):  
Takumi Isogai ◽  
Agnes Piednoir ◽  
Eri Akada ◽  
Yuki Akahoshi ◽  
Ryugo Tero ◽  
...  
2018 ◽  
Author(s):  
Luke Jordan ◽  
Nathan Wittenberg

This is a comprehensive study of the effects of the four major brain gangliosides (GM1, GD1b, GD1a, and GT1b) on the adsorption and rupture of phospholipid vesicles on SiO2 surfaces for the formation of supported lipid bilayer (SLB) membranes. Using quartz crystal microbalance with dissipation monitoring (QCM-D) we show that gangliosides GD1a and GT1b significantly slow the SLB formation process, whereas GM1 and GD1b have smaller effects. This is likely due to the net ganglioside charge as well as the positions of acidic sugar groups on ganglioside glycan head groups. Data is included that shows calcium can accelerate the formation of ganglioside-rich SLBs. Using fluorescence recovery after photobleaching (FRAP) we also show that the presence of gangliosides significantly reduces lipid diffusion coefficients in SLBs in a concentration-dependent manner. Finally, using QCM-D and GD1a-rich SLB membranes we measure the binding kinetics of an anti-GD1a antibody that has similarities to a monoclonal antibody that is a hallmark of a variant of Guillain-Barre syndrome.


2007 ◽  
Vol 2 (4) ◽  
pp. 165-172 ◽  
Author(s):  
Rémi Bérat ◽  
Murielle Rémy-Zolghadry ◽  
Céline Gounou ◽  
Claude Manigand ◽  
Sisareuth Tan ◽  
...  

2005 ◽  
Vol 89 (5) ◽  
pp. 3372-3385 ◽  
Author(s):  
Ralf P. Richter ◽  
Joséphine Lai Kee Him ◽  
Béatrice Tessier ◽  
Céline Tessier ◽  
Alain R. Brisson

2018 ◽  
Author(s):  
Luke Jordan ◽  
Nathan Wittenberg

This is a comprehensive study of the effects of the four major brain gangliosides (GM1, GD1b, GD1a, and GT1b) on the adsorption and rupture of phospholipid vesicles on SiO2 surfaces for the formation of supported lipid bilayer (SLB) membranes. Using quartz crystal microbalance with dissipation monitoring (QCM-D) we show that gangliosides GD1a and GT1b significantly slow the SLB formation process, whereas GM1 and GD1b have smaller effects. This is likely due to the net ganglioside charge as well as the positions of acidic sugar groups on ganglioside glycan head groups. Data is included that shows calcium can accelerate the formation of ganglioside-rich SLBs. Using fluorescence recovery after photobleaching (FRAP) we also show that the presence of gangliosides significantly reduces lipid diffusion coefficients in SLBs in a concentration-dependent manner. Finally, using QCM-D and GD1a-rich SLB membranes we measure the binding kinetics of an anti-GD1a antibody that has similarities to a monoclonal antibody that is a hallmark of a variant of Guillain-Barre syndrome.


MRS Bulletin ◽  
2006 ◽  
Vol 31 (7) ◽  
pp. 527-531 ◽  
Author(s):  
Liangfang Zhang ◽  
Steve Granick

Planar-supported phospholipid bilayers are responsive surfaces that reconstruct when macromolecules adsorb. This review outlines the phenomenon of lipid diffusion “slaved” to or significantly controlled by that of macromolecular adsorbates. To elucidate such systems, we discuss the value of spatially resolved experiments at the few-molecule level, lipid diffusion compared in outer and inner leaflets of the supported bilayer, and a simple method to minimize defects by the strategy of “electrostatic stitching.”


Author(s):  
Xinxin Woodward ◽  
Christopher V. Kelly

ABSTRACTPhase separation is a fundamental organizing mechanism on cellular membranes. Lipid phases have complex dependencies on the membrane composition, curvature, tension, and temperature. Single-molecule diffusion measures a key characteristic of membrane behavior and relates to the effective membrane viscosity. Lipid diffusion rates vary by up to ten-fold between liquid-disordered (Ld) and liquid-ordered (Lo) phases depending on the membrane composition, measurement technique, and the surrounding environment. This manuscript reports the lipid diffusion on phase-separated supported lipid bilayers (SLBs) with varying temperature, composition, and lipid phase. Lipid diffusion is measured by single-particle tracking (SPT) and fluorescence correlation spectroscopy (FCS) via custom data acquisition and analysis protocols that apply to diverse membranes systems. We demonstrate agreement between FCS and SPT analyses with both the single-step length distribution and the mean squared displacement of lipids with significant immobile diffusers. Traditionally, SPT is sensitive to diffuser aggregation, whereas FCS largely excludes aggregates from the reported data. Protocols are reported for identifying and culling the aggregates prior to calculating diffusion rates via SPT. With aggregate culling, all diffusion measurement methods provide consistent results. With varying membrane composition and temperature, we demonstrate the importance of the tie-line length that separates the coexisting lipid phases in predicting the differences in diffusion between the Ld and Lo phases.HIGHLIGHTSLipid diffusion varies with the lipid phases, temperature, and aggregationAggregate culling yields consistent measurements from single-particle tracking and fluorescence correlation spectroscopyMembrane with higher cholesterol content or at low temperature have more aggregatesA more variation in the diffusion rates occurred between the coexisting lipid phases at low temperatures and low cholesterol content


1992 ◽  
Vol 63 (5) ◽  
pp. 1346-1354 ◽  
Author(s):  
M. Stelzle ◽  
R. Miehlich ◽  
E. Sackmann

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Brendan P. Dyett ◽  
Haitao Yu ◽  
Jamie Strachan ◽  
Calum J. Drummond ◽  
Charlotte E. Conn

Abstract Drug delivery with nanocarriers relies on the interaction of individual nanocarriers with the cell surface. For lipid-based NCs, this interaction uniquely involves a process of membrane fusion between the lipid bilayer that makes up the NC and the cell membrane. Cubosomes have emerged as promising fusogenic NCs, however their individual interactions had not yet been directly observed due to difficulties in achieving adequate resolution or disentangling multiple interactions with common characterization techniques. Moreover, many studies on these interactions have been performed under static conditions which may not mimic the actual transport of NCs. Herein we have observed fusion of lipid cubosome NCs with lipid bilayers under flow. Total internal reflection microscopy has allowed visualisation of the fusion event which was sensitive to the lipid compositions and rationalized by lipid diffusion. The fusion event in supported lipid bilayers has been compared with those in cells, revealing a distinct similarity in kinetics.


2019 ◽  
Author(s):  
Luke Jordan ◽  
Megan Blauch ◽  
Ashley Baxter ◽  
Jennie Cawley ◽  
Nathan Wittenberg

This is a comprehensive study of the effects of the four major brain gangliosides (GM1, GD1b, GD1a, and GT1b) on the adsorption and rupture of phospholipid vesicles on SiO2 surfaces for the formation of supported lipid bilayer (SLB) membranes. Using quartz crystal microbalance with dissipation monitoring (QCM-D) we show that gangliosides GD1a and GT1b significantly slow the SLB formation process, whereas GM1 and GD1b have smaller effects. This is likely due to the net ganglioside charge as well as the positions of acidic sugar groups on ganglioside glycan head groups. Data is included that shows calcium can accelerate the formation of ganglioside-rich SLBs. Using fluorescence recovery after photobleaching (FRAP) we also show that the presence of gangliosides significantly reduces lipid diffusion coefficients in SLBs in a concentration-dependent manner. Finally, using QCM-D and GD1a-rich SLB membranes we measure the binding kinetics of an anti-GD1a antibody that has similarities to a monoclonal antibody that is a hallmark of a variant of Guillain-Barre syndrome.


Sign in / Sign up

Export Citation Format

Share Document