Experimental behaviour of reinforced concrete-filled steel tubes under eccentric tension

2017 ◽  
Vol 136 ◽  
pp. 91-100 ◽  
Author(s):  
Ju Chen ◽  
Jun Wang ◽  
Wei Li
2019 ◽  
Vol 217 ◽  
pp. 37-49 ◽  
Author(s):  
Amin Nabati ◽  
Tohid Ghanbari-Ghazijahani ◽  
Ching-Tai Ng

Author(s):  
Shaik Heena ◽  
Syed Rizwan ◽  
A.B.S. Dadapeer

Concrete filled steel tubes (CFST) member have many advantages compared with the ordinary structural member made of steel or reinforced concrete. One of the main advantages is the interaction between the steel tube and concrete. Concrete delays the steel tube’s local buckling, whereas the steel tube confines the concrete and thereby increases the concrete’s strength. CFSTs are economical and permit rapid construction because the steel tube serves as formwork and reinforcement to the concrete fill, negating the need for either. The deformation capacity of the system is increased by the combined action of the concrete fill with the thin, ductile steel tube. The concrete fill significantly increases inelastic deformation capacity and the compressive stiffness and load capacity of the CFST member. In building construction concrete filled steel tubes are very widely used for columns in combination with steel or reinforced concrete beam. In this work totally 9 specimens were tested out of which 3 specimens were empty steel tubes and remaining 6 specimens were concrete filled with different bonding techniques. As it is prefabricated time consumption will be less in construction practice and due to confinement more ductility is expected which is very useful in earthquake resistant structures. Load carrying capacity of CFST almost doubled in comparison with empty steel tubes. Ultimate load carrying capacity of concrete filled steel tube beams almost doubled compared to empty steel tubes. Compared to empty steel tubes, strength increase of 67.19%, 97.48% and 114.84% was observed in normal CFST, CFST with sand blasting and CFST with diagonal shear connector beams respectively. Average ultimate load of EST was 105.66kN whereas average load of CFSTB, CFSTBWSB and CFSTBWDSC was 176.66, 208.66 and 227kN respectively. The maximum load was taken by the specimen CFSTBWDSC – 03 which was 231kN, it may be because of presence of diagonal shear connector inside the tube.


2012 ◽  
Vol 174-177 ◽  
pp. 35-38
Author(s):  
Fei Yu Liao ◽  
Yong Jin Li

Gap between steel tube and concrete core could be recognized as a type of initial concrete imperfection in concrete-filled steel tubular (CFST) members. This paper is an attempt to study the effect of gap on the behaviour of concrete-filled steel tubular (CFST) columns subjected to eccentric compression. A total 14 specimens were tested and the main parameters were the gap type (circumferential gap and spherical-cap) and gap ratio. The influence of gap on the failure mode and ultimate strength of CFST columns were experimentally examined.


Sign in / Sign up

Export Citation Format

Share Document