Experimental Behaviour of Recycled Aggregate Concrete-Filled Steel Tubes Under Axial Loading

2019 ◽  
Vol 17 (8) ◽  
pp. 1341-1351 ◽  
Author(s):  
Vui Van Cao
2014 ◽  
Vol 1065-1069 ◽  
pp. 1323-1326
Author(s):  
Yi Jie Huang ◽  
Huang Sheng Sun

A review on the properties of recycled aggregate concrete filled steel tubes (RACSFT) was presented, followed by the short overview on the related researches. The uniaxial mechanical behavior, flexural performance, creep performance as well as eccentric loaded behavior of RACSFT specimens were discussed. It was found that the differences between the element made of recycled aggregate concrete (RAC) and that of natural aggregate concrete (NAC) could not be ignored. The performance of the RACFST is inferior to that of natural concrete filled steel tube (CFST). But, the RACSFT can be applied into structural elements safely. Based on the test results, it was also concluded that the RACSFT is an effective method to improve the application of RAC.


2012 ◽  
Vol 166-169 ◽  
pp. 3233-3236 ◽  
Author(s):  
Jun Tao Li ◽  
Jin Jun Xu ◽  
Zong Ping Chen ◽  
Yi Li ◽  
Ying Liang

In order to research the interface bond-slip behaviors of recycled aggregate concrete-filled square steel tube (RACFSST), ten specimens using waste concrete were designed for launch test. The three changing parameters were concrete strength grade, embedded length and recycled coarse aggregate replacement rate. The load–slip curves of square steel tubes and recycled aggregate concrete were obtained, and starting bond strength and ultimate bond strength influenced by each changing parameter were analyzed. The results show that the replacement rate had a slight influence on the starting bond strength and ultimate bond strength, while the embedded length had the opposite effect. The shorter embedded length specimens had larger bond strength. The concrete strength had a relatively large influence on them.


Sign in / Sign up

Export Citation Format

Share Document