Thermal properties and reliability of eutectic mixture of stearic acid-acetamide as phase change material for latent heat storage

2017 ◽  
Vol 106 ◽  
pp. 178-186 ◽  
Author(s):  
Guixiang Ma ◽  
Lipeng Han ◽  
Jinhe Sun ◽  
Yongzhong Jia
2012 ◽  
Vol 512-515 ◽  
pp. 3007-3010
Author(s):  
Jing Yu Huang ◽  
Shi Lei Lv ◽  
Chen Xi Zhang ◽  
Zhi Wei Wang

This study focuses on the preparation, thermal properties of alkanes eutectic mixtures (n-Octadecane/n-Eicosane, n-Octadecane/n-Docosane and n-Heptadecane /n-Eicosane) as candidate phase change material (PCM) for low temperature latent heat storage systems in building envelopes. Their melting temperature and latent heat were tested by Differential scanning calorimetry (DSC). The testing values were closed to calculation values of accepted theory that ensured the reliability of those datas. The results indicated n-Octadecane/n-Docosane eutectic mixture was more promising PCM for buildings in terms of melting temperature (25.3°C) and latent heat values of melting (158.2J/g).


1993 ◽  
Vol 115 (4) ◽  
pp. 240-243 ◽  
Author(s):  
Ch. Charach

This communication extends the thermodynamic analysis of latent heat storage in a shell-and-tube heat exchanger, developed recently, to the complete heat storage-removal cycle. Conditions for the cyclic operation of this system are formulated within the quasi-steady approximation for the axisymmetric two-dimensional conduction-controlled phase change. Explicit expressions for the overall number of entropy generation units that account for heat transfer and pressure drop irreversibilities are derived. Optimization of this figure of merit with respect to the freezing point of the phase-change material and with respect to the number of heat transfer units is analyzed. When the frictional irreversibilities of the heat removal stage are negligible, the results of these studies are in agreement with those developed recently by De Lucia and Bejan (1991) for a one-dimensional latent heat storage system.


Sign in / Sign up

Export Citation Format

Share Document