scholarly journals Application T-History method on measurement of thermal properties of phase change material as latent heat storage in solar water heating system

Author(s):  
R Thaib ◽  
M Riza ◽  
M Amin ◽  
S Rizal

An educational solar water heater with phase change material (PCM) was designed, developed, and constructed for instructional and demonstrative purposes. This interactive solar water heating system experimental apparatus is capable of demonstrating thermal energy storage and heat transfer concepts and principles. The system consists of two simultaneously functioning heat absorbing units. The first is a flat plate solar collector and the other is a heat storage unit consisting of phase change material (paraffin wax). The heat storage unit utilizes small aluminium cylinders (heat exchangers) filled with paraffin wax as the heat storage medium. Water pump is used to circulate the water between the solar collector and the storage unit where the PCM is located. Results indicate that the PCM stored energy, as latent heat, that was absorbed by the solar collector and released to heat the water in the storage tank when half of the hot water was replaced with cold water. Moreover, tests indicated that latent heat storage is more effective than sensible.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2347 ◽  
Author(s):  
Liangliang Sun ◽  
Nan Xiang ◽  
Yanping Yuan ◽  
Xiaoling Cao

Phase change material can be used as heat transfer fluid in the solar water heating system, which is the latest way to improve thermal efficiency. In this paper, graphene composite paraffin emulsion is used as heat transfer fluid in a solar water heating-phase change material (SWH-PCM) system. By comparing with the traditional solar water heating (SWH) system, the thermal performance characteristics of SWH-PCM system have been investigated experimentally. The SWH-PCM system has higher heat storage than the SWH system. The heat storage of SWH-PCM system and SWH system all increase with the increase of solar irradiance, while the thermal efficiency has the opposite trend. The flow rate has a greater influence on the thermal efficiency of SWH-PCM system than that of the SWH system. With the flow rate of 200 L/h, the thermal efficiency of SWH-PCM system is 14.21% higher than that of the SWH system. In summary, the SWH-PCM system is a promising solar water heating system with high heat storage and thermal efficiency.


Sign in / Sign up

Export Citation Format

Share Document