scholarly journals Pattern avoidance for alternating permutations and Young tableaux

2011 ◽  
Vol 118 (4) ◽  
pp. 1436-1450 ◽  
Author(s):  
Joel Brewster Lewis
2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Joel Brewster Lewis

International audience We give bijective proofs of pattern-avoidance results for a class of permutations generalizing alternating permutations. The bijections employed include a modified form of the RSK insertion algorithm and recursive bijections based on generating trees. As special cases, we show that the sets $A_{2n}(1234)$ and $A_{2n}(2143)$ are in bijection with standard Young tableaux of shape $\langle 3^n \rangle$. Alternating permutations may be viewed as the reading words of standard Young tableaux of a certain skew shape. In the last section of the paper, we study pattern avoidance in the reading words of standard Young tableaux of any skew shape. We show bijectively that the number of standard Young tableaux of shape $\lambda / \mu$ whose reading words avoid $213$ is a natural $\mu$-analogue of the Catalan numbers. Similar results for the patterns $132$, $231$ and $312$. Nous présentons des preuves bijectives de résultats pour une classe de permutations à motifs exclus qui généralisent les permutations alternantes. Les bijections utilisées reposent sur une modification de l'algorithme d'insertion "RSK" et des bijections récursives basées sur des arbres de génération. Comme cas particuliers, nous montrons que les ensembles $A_{2n}(1234)$ et $A_{2n}(2143)$ sont en bijection avec les tableaux standards de Young de la forme $\langle 3^n \rangle$. Une permutation alternante peut être considérée comme le mot de lecture de certain skew tableau. Dans la dernière section de l'article, nous étudions l'évitement des motifs dans les mots de lecture de skew tableaux généraux. Nous montrons bijectivement que le nombre de tableaux standards de forme $\lambda / \mu$ dont les mots de lecture évitent $213$ est un $\mu$-analogue naturel des nombres de Catalan. Des résultats analogues sont valables pour les motifs $132$, $231$ et $312$.


10.37236/1173 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Joel Brewster Lewis

We extend earlier work of the same author to enumerate alternating permutations avoiding the permutation pattern $2143$.  We use a generating tree approach to construct a recursive bijection between the set $A_{2n}(2143)$ of alternating permutations of length $2n$ avoiding $2143$ and the set of standard Young tableaux of shape $\langle n, n, n\rangle$, and between the set $A_{2n + 1}(2143)$ of alternating permutations of length $2n + 1$ avoiding $2143$ and the set of shifted standard Young tableaux of shape $\langle n + 2, n + 1, n\rangle$.  We also give a number of conjectures and open questions on pattern avoidance in alternating permutations and generalizations thereof.


10.37236/3246 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
Nihal Gowravaram ◽  
Ravi Jagadeesan

We investigate pattern avoidance in alternating permutations and generalizations thereof. First, we study pattern avoidance in an alternating analogue of Young diagrams. In particular, we extend Babson-West's notion of shape-Wilf equivalence to apply to alternating permutations and so generalize results of Backelin-West-Xin and Ouchterlony to alternating permutations. Second, we study pattern avoidance in the more general context of permutations with restricted ascents and descents. We consider a question of Lewis regarding permutations that are the reading words of thickened staircase Young tableaux, that is, permutations that have $k-1$ ascents followed by a descent, followed by $k-1$ ascents, et cetera. We determine the relative sizes of the sets of pattern-avoiding $(k-1)$-ascent permutations in terms of the forbidden pattern. Furthermore, inequalities in the sizes of sets of pattern-avoiding permutations in this context arise from further extensions of shape-equivalence type enumerations. This paper is the first of a two-paper series presenting the work of Beyond alternating permutations: Pattern avoidance in Young diagrams and tableaux (arXiv:1301.6796v1). The second in the series is Ascent-descent Young diagrams and pattern avoidance in alternating permutations (by the second author, submitted).


10.37236/859 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Marcos Kiwi ◽  
Martin Loebl

We address the following question: When a randomly chosen regular bipartite multi–graph is drawn in the plane in the "standard way", what is the distribution of its maximum size planar matching (set of non–crossing disjoint edges) and maximum size planar subgraph (set of non–crossing edges which may share endpoints)? The problem is a generalization of the Longest Increasing Sequence (LIS) problem (also called Ulam's problem). We present combinatorial identities which relate the number of $r$-regular bipartite multi–graphs with maximum planar matching (maximum planar subgraph) of at most $d$ edges to a signed sum of restricted lattice walks in ${\Bbb Z}^d$, and to the number of pairs of standard Young tableaux of the same shape and with a "descend–type" property. Our results are derived via generalizations of two combinatorial proofs through which Gessel's identity can be obtained (an identity that is crucial in the derivation of a bivariate generating function associated to the distribution of the length of LISs, and key to the analytic attack on Ulam's problem). Finally, we generalize Gessel's identity. This enables us to count, for small values of $d$ and $r$, the number of $r$-regular bipartite multi-graphs on $n$ nodes per color class with maximum planar matchings of size $d$.Our work can also be viewed as a first step in the study of pattern avoidance in ordered bipartite multi-graphs.


10.37236/2306 ◽  
2012 ◽  
Vol 19 (2) ◽  
Author(s):  
Yuexiao Xu ◽  
Sherry H. F. Yan

In this paper, we establish bijections between the set of 4123-avoiding down-up alternating permutations of length $2n$ and the set of standard Young tableaux of shape $(n,n,n)$, and between the set of 4123-avoiding down-up alternating permutations of length $2n-1$ and the set of shifted  standard Young tableaux of shape $(n+1, n, n-1)$ via an intermediate structure of Yamanouchi words. Moreover, we show that 4123-avoiding up-down alternating permutations of length $2n+1$  are in one-to-one correspondence with  standard Young tableaux of shape $(n+1,n,n-1)$, and 4123-avoiding up-down alternating permutations of length $2n$ are in bijection with shifted standard Young tableaux of shape $(n+2,n,n-2)$.


10.37236/1911 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Aaron D. Jaggard

Inspired by work of McKay, Morse, and Wilf, we give an exact count of the involutions in ${\cal S}_{n}$ which contain a given permutation $\tau\in{\cal S}_{k}$ as a subsequence; this number depends on the patterns of the first $j$ values of $\tau$ for $1\leq j\leq k$. We then use this to define a partition of ${\cal S}_{k}$, analogous to Wilf-classes in the study of pattern avoidance, and examine properties of this equivalence. In the process, we show that a permutation $\tau_1\ldots\tau_k$ is layered iff, for $1\leq j\leq k$, the pattern of $\tau_1\ldots\tau_j$ is an involution. We also obtain a result of Sagan and Stanley counting the standard Young tableaux of size $n$ which contain a fixed tableau of size $k$ as a subtableau.


10.37236/6427 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Zhousheng Mei ◽  
Suijie Wang

This paper extends Lewis's bijection (J. Combin. Theorey Ser. A 118, 2011) to a bijection between a more general class $\mathcal{L}(n,k,I)$ of permutations and the set of standard Young tableaux of shape $\langle (k+1)^n\rangle$, so the cardinality\[|\mathcal{L}(n,k,I)|=f^{\langle (k+1)^n\rangle},\]is independent of the choice of $I\subseteq [n]$. As a consequence, we obtain some new combinatorial realizations and identities on Catalan numbers. In the end, we raise a problem on finding a bijection between $\mathcal{L}(n,k,I)$ and $\mathcal{L}(n,k,I')$ for distinct $I$ and $I'$.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Sergi Elizalde ◽  
Yuval Roichman

International audience Arc permutations and unimodal permutations were introduced in the study of triangulations and characters. In this paper we describe combinatorial properties of these permutations, including characterizations in terms of pattern avoidance, connections to Young tableaux, and an affine Weyl group action on them. Les permutations arc et les permutations unimodales ont ètè introduites dans l'étude des triangulations et des caractères. Dans cet article, on dècrit les propriètès combinatoires de ces permutations, y compris des caractèrisations en termes de motifs interdits, des connexions avec des tableaux de Young, et une action du groupe de Weyl affine.


10.37236/3244 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Ravi Jagadeesan

We investigate pattern avoidance in alternating permutations and an alternating analogue of Young diagrams. In particular, using an extension of Babson and West's notion of shape-Wilf equivalence described in our recent paper (with N. Gowravaram), we generalize results of Backelin, West, and Xin and Ouchterlony to alternating permutations. Unlike Ouchterlony and Bóna's bijections, our bijections are not the restrictions of Backelin, West, and Xin's bijections to alternating permutations. This paper is the second of a two-paper series presenting the work of Beyond alternating permutations: Pattern avoidance in Young diagrams and tableaux (with N. Gowravaram, arXiv:1301.6796v1). The first paper in the series is Beyond alternating permutations: Pattern avoidance in Young diagrams and tableaux (with N. Gowravaram, Electronic Journal of Combinatorics 20(4):#P17, 2013).


2021 ◽  
Vol 866 ◽  
pp. 56-69
Author(s):  
James D. Currie ◽  
Lucas Mol
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document