Routine use of a highly automated and internally controlled real-time PCR assay for the diagnosis of herpes simplex and varicella-zoster virus infections

2004 ◽  
Vol 30 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Růžena Stránská ◽  
Rob Schuurman ◽  
Machiel de Vos ◽  
Anton M van Loon
2013 ◽  
Vol 22 (4) ◽  
pp. 245-248 ◽  
Author(s):  
Thean Yen Tan ◽  
Hao Zou ◽  
Danny Chee Tiong Ong ◽  
Khor Jia Ker ◽  
Martin Tze Wei Chio ◽  
...  

2015 ◽  
Vol 53 (6) ◽  
pp. 1921-1926 ◽  
Author(s):  
Sylvie Pillet ◽  
Paul O. Verhoeven ◽  
Amélie Epercieux ◽  
Thomas Bourlet ◽  
Bruno Pozzetto

A multiplex real-time PCR (quantitative PCR [qPCR]) assay detecting herpes simplex virus (HSV) and varicella-zoster virus (VZV) DNA together with an internal control was developed on the BD Max platform combining automated DNA extraction and an open amplification procedure. Its performance was compared to those of PCR assays routinely used in the laboratory, namely, a laboratory-developed test for HSV DNA on the LightCycler instrument and a test using a commercial master mix for VZV DNA on the ABI7500fast system. Using a pool of negative cerebrospinal fluid (CSF) samples spiked with either calibrated controls for HSV-1 and VZV or dilutions of a clinical strain that was previously quantified for HSV-2, the empirical limit of detection of the BD Max assay was 195.65, 91.80, and 414.07 copies/ml for HSV-1, HSV-2, and VZV, respectively. All the samples from HSV and VZV DNA quality control panels (Quality Control for Molecular Diagnostics [QCMD], 2013, Glasgow, United Kingdom) were correctly identified by the BD Max assay. From 180 clinical specimens of various origins, 2 CSF samples were found invalid by the BD Max assay due to the absence of detection of the internal control; a concordance of 100% was observed between the BD Max assay and the corresponding routine tests. The BD Max assay detected the PCR signal 3 to 4 cycles earlier than did the routine methods. With results available within 2 h on a wide range of specimens, this sensitive and fully automated PCR assay exhibited the qualities required for detecting simultaneously HSV and VZV DNA on a routine basis.


2011 ◽  
Vol 50 (3) ◽  
pp. 948-952 ◽  
Author(s):  
J.-F. Jazeron ◽  
C. Barbe ◽  
E. Frobert ◽  
F. Renois ◽  
D. Talmud ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Cyril C. Y. Yip ◽  
Siddharth Sridhar ◽  
Kit-Hang Leung ◽  
Andrew K. W. Cheng ◽  
Kwok-Hung Chan ◽  
...  

Several commercial PCR kits are available for detection of herpes simplex virus (HSV) and varicella zoster virus (VZV), but the test performance of one CE-marked in vitro diagnostic kit—RealStar® alpha Herpesvirus PCR Kit—has not been well studied. This study evaluated the performance of RealStar® alpha Herpesvirus PCR Kit 1.0 on the LightCycler® 480 Instrument II for detection and differentiation of HSV-1, HSV-2, and VZV in human clinical specimens. We evaluated the analytical sensitivity of the RealStar® and in-house multiplex real-time PCR assays using serial dilutions of nucleic acids extracted from clinical specimens. The analytical sensitivity of the RealStar® assay was 10, 32, and 100 copies/reaction for HSV-1, HSV-2, and VZV, respectively, which was slightly higher than that of the in-house multiplex real-time PCR assay. Reproducibility of the cycle threshold (Cp) values for each viral target was satisfactory with the intra- and interassay coefficient of variation values below 5% for both assays. One-hundred and fifty-three clinical specimens and 15 proficiency testing samples were used to evaluate the diagnostic performance of RealStar® alpha Herpesvirus PCR Kit against the in-house multiplex real-time PCR assay. The RealStar® assay showed 100% sensitivity and specificity when compared to the in-house assay. Cp values of the RealStar® and in-house assays showed excellent correlation. RealStar® alpha Herpesvirus PCR is a sensitive, specific, and reliable assay for the detection of HSV-1, HSV-2, and VZV, with less extensive verification requirements compared to a laboratory developed assay.


Sign in / Sign up

Export Citation Format

Share Document