Comparison of the Abbott Alinity m and m2000 assays for the quantification of HIV-1, HCV and HBV in clinical samples

2020 ◽  
Vol 126 ◽  
pp. 104331
Author(s):  
Lina Mouna ◽  
Coralie Pallier ◽  
Stéphanie Proust ◽  
Corinne Prégermain ◽  
Anne-Marie Roque-Afonso
Keyword(s):  
AIDS ◽  
2009 ◽  
Vol 23 (12) ◽  
pp. 1602-1605 ◽  
Author(s):  
Ron M Kagan ◽  
Prakash Sista ◽  
Theresa Pattery ◽  
Lee Bacheler ◽  
Dale A Schwab

2021 ◽  
Author(s):  
Disha Bhange ◽  
Nityanand Prasad ◽  
Swati Singh ◽  
Harshit Kumar Prajapati ◽  
Shesh Prakash Maurya ◽  
...  

AbstractIn a multicentric, observational, investigator-blinded, and longitudinal clinical study of 764 ART-naïve subjects, we identified nine different promoter-variant strains of HIV-1 subtype C (HIV-1C) emerging in the Indian population, with some of these variants being reported for the first time. Unlike several previous studies, our work here focuses on the evolving viral regulatory elements, not coding sequences. The emerging viral strains contain additional copies of the existing transcription factor binding sites (TFBS), including TCF-1α/LEF-1, RBEIII, AP-1, and NF-κB, created by sequence duplication. The additional TFBS are genetically diverse and may blur the distinction between the modulatory region of the promoter and the viral enhancer. In a follow-up analysis, we found trends, but not significant associations between any specific variant promoter and prognostic markers, probably because the emerging viral strains might not have established mono infections yet. Illumina sequencing of four clinical samples containing a co-infection indicated the domination of one strain over the other and establishing a stable ratio with the second strain at the follow-up time-points. Since a single promoter regulates viral gene expression and constitutes the master regulatory circuit with Tat, the acquisition of additional and variant copies of the TFBS may significantly impact viral latency and latent reservoir characteristics. Further studies are urgently warranted to understand how the diverse TFBS profiles of the viral promoter may modulate the characteristics of the latent reservoir, especially following the initiation of antiretroviral therapy.Significance StatementA unique conglomeration of TFBS enables the HIV-1 promoter to accomplish two diametrically opposite functions – transcriptional activation and transcriptional silencing. The various phases of viral latency - establishment, maintenance, and reversal - collectively determine the replication fitness of individual viral strains. A profound variation in the TFBS composition of the viral promoter may significantly alter the viral latency properties and the latent reservoir characteristics. Although the duplication of certain TFBS remains a quality unique to HIV-1C, the high-level genetic recombination of HIV-1 may promote the transfer of such molecular properties to the other HIV-1 subtypes. The emergence of several promoter-variant viral strains may make the task of a ‘functional cure’ more challenging in HIV-1C.


PLoS ONE ◽  
2009 ◽  
Vol 4 (6) ◽  
pp. e6008 ◽  
Author(s):  
Ronald J. Lubelchek ◽  
Blake Max ◽  
Caroline J. Sandusky ◽  
Bala Hota ◽  
David E. Barker

2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Christian Diamant Mossoro-Kpinde ◽  
Ralph-Sydney Mboumba Bouassa ◽  
Mohammad-Ali Jenabian ◽  
Serge Tonen Wolyec ◽  
Leman Robin ◽  
...  

Objectives. We evaluated the performances of Amplix real-time PCR platform developed by Biosynex (Strasbourg, France), combining automated station extraction (Amplix station 16 Dx) and real-time PCR (Amplix NG), for quantifying plasma HIV-1 RNA by lyophilized HIV-1 RNA-based Amplix reagents targeting gag and LTR, using samples from HIV-1-infected adults from Central African Republic. Results. Amplix real-time PCR assay showed low limit of detection (28 copies/mL), across wide dynamic range (1.4–10 log copies/mL), 100% sensitivity and 99% specificity, high reproducibility, and accuracy with mean bias < 5%. The assay showed excellent correlations and concordance of 95.3% with the reference HIV-1 RNA load assay (Roche), with mean absolute bias of +0.097 log copies/mL by Bland-Altman analysis. The assay was able to detect and quantify the most prevalent HIV-1 subtype strains and the majority of non-B subtypes, CRFs of HIV-1 group M, and HIV-1 groups N and O circulating in Central Africa. The Amplix assay showed 100% sensitivity and 99.6% specificity to diagnose virological failure in clinical samples from antiretroviral drug-experienced patients. Conclusions. The HIV-1 RNA-based Amplix real-time PCR platform constitutes sensitive and reliable system for clinical monitoring of HIV-1 RNA load in HIV-1-infected children and adults, particularly adapted to intermediate laboratory facilities in sub-Saharan Africa.


2021 ◽  
Vol 12 ◽  
Author(s):  
Disha Bhange ◽  
Nityanand Prasad ◽  
Swati Singh ◽  
Harshit Kumar Prajapati ◽  
Shesh Prakash Maurya ◽  
...  

In a multicentric, observational, investigator-blinded, and longitudinal clinical study of 764 ART-naïve subjects, we identified nine different promoter variant strains of HIV-1 subtype C (HIV-1C) emerging in the Indian population, with some of these variants being reported for the first time. Unlike several previous studies, our work here focuses on the evolving viral regulatory elements, not the coding sequences. The emerging viral strains contain additional copies of the existing transcription factor binding sites (TFBS), including TCF-1α/LEF-1, RBEIII, AP-1, and NF-κB, created by sequence duplication. The additional TFBS are genetically diverse and may blur the distinction between the modulatory region of the promoter and the viral enhancer. In a follow-up analysis, we found trends, but no significant associations between any specific variant promoter and prognostic markers, probably because the emerging viral strains might not have established mono infections yet. Illumina sequencing of four clinical samples containing a coinfection indicated the domination of one strain over the other and establishing a stable ratio with the second strain at the follow-up time points. Since a single promoter regulates viral gene expression and constitutes the master regulatory circuit with Tat, the acquisition of additional and variant copies of the TFBS may significantly impact viral latency and latent reservoir characteristics. Further studies are urgently warranted to understand how the diverse TFBS profiles of the viral promoter may modulate the characteristics of the latent reservoir, especially following the initiation of antiretroviral therapy.


2006 ◽  
Vol 51 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Nicolas Sluis-Cremer ◽  
Chih-Wei Sheen ◽  
Shannon Zelina ◽  
Pedro S. Argoti Torres ◽  
Urvi M. Parikh ◽  
...  

ABSTRACT The K70E mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has become more prevalent in clinical samples, particularly in isolates derived from patients for whom triple-nucleoside regimens that include tenofovir (TNV), abacavir, and lamivudine (3TC) failed. To elucidate the molecular mechanism by which this mutation confers resistance to these nucleoside RT inhibitors (NRTI), we conducted detailed biochemical analyses comparing wild-type (WT), K70E, and K65R HIV-1 RT. Pre-steady-state kinetic experiments demonstrate that the K70E mutation in HIV-1 RT allows the enzyme to discriminate between the natural deoxynucleoside triphosphate substrate and the NRTI triphosphate (NRTI-TP). Compared to the WT enzyme, K70E RT showed 2.1-, 2.3-, and 3.5-fold-higher levels of resistance toward TNV-diphosphate, carbovir-TP, and 3TC-TP, respectively. By comparison, K65R RT demonstrated 12.4-, 12.0-, and 13.1-fold-higher levels of resistance, respectively, toward the same analogs. NRTI-TP discrimination by the K70E (and K65R) mutation was primarily due to decreased rates of NRTI-TP incorporation and not to changes in analog binding affinity. The K65R and K70E mutations also profoundly impaired the ability of RT to excise 3′-azido-2′,3′-dideoxythymidine monophosphate (AZT-MP) and other NRTI-MP from the 3′ end of a chain-terminated primer. When introduced into an enzyme with the thymidine analog mutations (TAMs) M41L, L210W, and T215Y, the K70E mutation inhibited ATP-mediated excision of AZT-MP. Taken together, these findings indicate that the K70E mutation, like the K65R mutation, reduces susceptibility to NRTI by selectively decreasing NRTI-TP incorporation and is antagonistic to TAM-mediated nucleotide excision.


2021 ◽  
Vol 19 ◽  
Author(s):  
Peijie Gao ◽  
Fengting Yu ◽  
Xiaozhen Yang ◽  
Dan Li ◽  
Yalun Shi ◽  
...  

Background: HIV drug resistance poses a major challenge for anti-retroviral treatment (ART) and the prevention and control of HIV epidemic. Objective: The study aims to establish a novel in-house assay with high efficiency, named AP in-house method, that would be suitable for HIV-1 drug resistance detection in China. Methods: An in-house HIV-1 genotyping method was used to sequence the partial pol gene from 60 clinical plasma samples; the results of our test were compared with a commercial ViroSeq HIV-1 genotyping system. Results : Among sixty samples, 58(96.7%) were successfully amplified by AP in-house method, five of them harbored viral load below 1,000 copies/ml. The genotype distribution was 43.1% CRF07_BC (25/58), 39.7% CRF01_AE (23/58), 6.9% CRF55_01B (4/58), 5.2% subtype B (3/58) and 5.2% CRF08_BC (3/58). Compared with that of the ViroSeq system, the consistent rate of these nucleotides and amino acids obtained by AP in-house method was up to 99.5 ± 0.4% and 99.5 ± 0.4%, respectively. A total of 290 HIV-1 drug resistance mutations were identified by two methods, including 126 nucleoside reverse transcriptase inhibitors (NRTIs), 145 non-nucleoside reverse transcriptase inhibitors (NNRTIs) and 19 protease inhibitors (PIs) resistance mutations. Out of them, 94.1% (273/290) were completely concordant between the AP in-house method and the ViroSeq system. Conclusion: Overall, the evaluation of AP in-house method provided comparable results to those of the ViroSeq system on diversified HIV-1 subtypes in China.


2018 ◽  
Vol 56 (10) ◽  
Author(s):  
Frank Wiesmann ◽  
Robert Ehret ◽  
Gudrun Naeth ◽  
Martin Däumer ◽  
Jörg Fuhrmann ◽  
...  

ABSTRACT High accuracy and precision at the lower end of quantification are crucial requirements of a modern HIV viral load (VL) assay, since some clinically relevant thresholds are located at 50 and 200 copies/ml. In this study, we compared the performance of two new fully automated HIV-1 VL assays, Aptima HIV-1 Quant Dx and Cobas HIV-1 (Cobas 6800), with the established RealTime m2000 assay. Assay precision and accuracy were evaluated in a retrospective evaluation out of excess plasma material from four HIV-1+ individuals (subtypes B, C, CRF01_AE, and CRF02_AG). Native plasma samples were diluted to nominal concentrations at 50 and 200 copies/ml (according to the RealTime m2000 assay). All dilutions were tested in triplicate in five independent runs over 5 days and in three labs per system. Assay concordance was determined using 1,011 surplus clinical routine samples, as well as selected retrospective longitudinal samples from 7 patients on treatment. The three assays yielded highly concordant results for individual clinical samples (R2 > 0.98; average difference, ≤0.2 log copies/ml) and retrospective longitudinal samples from patients on treatment. The Aptima and RealTime assays showed similar high precision, meeting the 5σ criterion for the majority of samples across all labs and subtypes. The Cobas assay was less precise, missing the 5σ criterion for the majority of samples at low concentrations. In this analysis, results from the Cobas assay appeared less reliable near the clinically relevant cutoff and should be interpreted with more caution in this context. Due to high precision, full automation, and high concordance with the RealTime assay, the Aptima assay represents a good alternative in routine VL monitoring.


Sign in / Sign up

Export Citation Format

Share Document