Chipping behaviour of all-ceramic crowns with zirconia framework and CAD/CAM manufactured veneer

2012 ◽  
Vol 40 (2) ◽  
pp. 154-162 ◽  
Author(s):  
M. Schmitter ◽  
D. Mueller ◽  
S. Rues
Keyword(s):  
Cad Cam ◽  
2000 ◽  
Author(s):  
Van P. Thompson ◽  
Stephen Kao ◽  
Ivory Kirkpatrick

Abstract Teeth are uniquely capable of withstanding high forces (>200 N) with small contact area (< 0.5 mm2) and a high number of fatigue cycles (> 107) with little evidence of damage. Yet the tooth is comprised of an outer very brittle, anisotropic, highly crystalline enamel layer supported by an inner soft, but tough dentin. These structures are joined by a small (appoximately 30 microns wide) transition zone called the dento-enamel junction (DEJ). The DEJ plays a critical role in transfer of stress across the layers of the tooth. How the enamel-dentin complex (EDC) comprised of these layers and the DEJ is able to withstand the high contact loads and high cycle fatigue is not well understood. An understanding of the interplay of the various components would serve as the basis for design of dental ceramic or resin based composite crowns capable of service lives approaching those on natural teeth. Current all ceramic crowns have high failure rates (1–5% per yr) on molar teeth and improved performance is required before CAD-CAM restorations can be successful.


2012 ◽  
Vol 31 (5) ◽  
pp. 828-834 ◽  
Author(s):  
Mitsunori UNO ◽  
Ryugo NONOGAKI ◽  
Tokushi FUJIEDA ◽  
Hajime ISHIGAMI ◽  
Masakazu KURACHI ◽  
...  
Keyword(s):  
Cad Cam ◽  

2005 ◽  
Vol 24 (3) ◽  
pp. 456-459 ◽  
Author(s):  
Takashi NAKAMURA ◽  
Hideaki TANAKA ◽  
Soichiro KINUTA ◽  
Takeshi AKAO ◽  
Kei OKAMOTO ◽  
...  

2016 ◽  
Vol 41 (6) ◽  
pp. 666-671 ◽  
Author(s):  
C Gillette ◽  
R Buck ◽  
N DuVall ◽  
S Cushen ◽  
M Wajdowicz ◽  
...  

SUMMARY Objective: To evaluate the significance of reduced axial wall height on retention of adhesively luted, all-ceramic, lithium disilicate premolar computer-aided design/computer-aided manufacturing (CAD/CAM) crowns based on preparations with a near ideal total occlusal convergence of 10°. Methods: Forty-eight recently extracted premolars were randomly divided into four groups (n=12). Each group received all-ceramic CAD/CAM crown preparations featuring axial wall heights of 0, 1, 2, and 3 mm, respectively, all with a 10° total occlusal convergence. Scanned preparations were fitted with lithium disilicate all-ceramic crowns that were luted with a self-etching resin cement. Specimens were tested to failure at a 45° angle to the tooth long axis with failure load converted to megapascals (MPa) based on the measured bonding surface area. Mean data were analyzed using analysis of variance/Tukey's post hoc test (α=0.05). Results: Lithium disilicate crowns adhesively luted on preparations with 0 axial wall height demonstrated significantly less failure resistance compared with the crowns luted on preparations with axial wall heights of 1 to 3 mm. There was no failure stress difference between preparations with 1 to 3 mm axial wall height. Conclusions: Under conditions of this study, adhesively luted lithium disilicate bicuspid crowns with a total occlusal convergence of 10° demonstrated similar failure resistance independent of axial wall height of 1 to 3 mm. This study provides some evidence that adhesion combined with an ideal total occlusal convergence may compensate for reduced axial wall height.


2017 ◽  
Vol 29 (1) ◽  
pp. 82-90 ◽  
Author(s):  
Lucia K. Zaugg ◽  
Isabella Zehnder ◽  
Nadja Rohr ◽  
Jens Fischer ◽  
Nicola U. Zitzmann
Keyword(s):  
Cad Cam ◽  

Sign in / Sign up

Export Citation Format

Share Document