Enhancing cobalt recovery from Li-ion batteries using grinding treatment prior to the leaching and solvent extraction process

2020 ◽  
Vol 8 (3) ◽  
pp. 103801 ◽  
Author(s):  
V.C.I. Takahashi ◽  
A.B. Botelho Junior ◽  
D.C.R. Espinosa ◽  
J.A.S. Tenório
2014 ◽  
Vol 540 ◽  
pp. 267-271
Author(s):  
Xin Liu ◽  
Lin Yan Li ◽  
Fan Yun Zeng ◽  
Xue Jun Wang ◽  
Sheng Ming Xu

With the rapid development and wide application of Li-ion batteries, cathode materials containing value metals Co, Ni and Mn are blended by several kind of metal oxide presently for pursuing high safe stability and low cost. The composition of spent Li-ion batteries has become complicated and optimum leaching condition varied. In this paper, leaching process for the mixture of pure LiCoO2and Li (Ni1/3Co1/3Mn1/3)O2was studied. With an increase in component of LiCoO2in mixed materials, the optimum leaching condition varied as: temperature from 60°C to 90°C, H2O2addition amount from 0.54 to 0.75ml/g and liquid-solid ratio from 10 to 20. According to this result, a real mixed spent batteries materials was recovered by being leached in 2M H2SO4at temperature of 90°C, liquid-solid ratio 20 and 0.6ml/g H2O2added. The leaching efficiencies of Co, Ni, Mn, Li were 96.88%, 93.71%, 92.12%, 99.43% respectively. Cu, Al and Fe in solution were removed by precipitation and solvent extraction. Finally, Ni, Co, Mn were extracted by D2EHPA for separating with Na+and other impurities, which is used as a raw materials for preparation of cathode active materials in batteries.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1999
Author(s):  
Amilton Barbosa Botelho Junior ◽  
Srecko Stopic ◽  
Bernd Friedrich ◽  
Jorge Alberto Soares Tenório ◽  
Denise Crocce Romano Espinosa

The increasing demand for Li-ion batteries for electric vehicles sheds light upon the Co supply chain. The metal is crucial to the cathode of these batteries, and the leading global producer is the D.R. Congo (70%). For this reason, it is considered critical/strategic due to the risk of interruption of supply in the short and medium term. Due to the increasing consumption for the transportation market, the batteries might be considered a secondary source of Co. The outstanding amount of spent batteries makes them to a core of urban mining warranting special attention. Greener technologies for Co recovery are necessary to achieve sustainable development. As a result of these sourcing challenges, this study is devoted to reviewing the techniques for Co recovery, such as acid leaching (inorganic and organic), separation (solvent extraction, ion exchange resins, and precipitation), and emerging technologies—ionic liquids, deep eutectic solvent, supercritical fluids, nanotechnology, and biohydrometallurgy. A dearth of research in emerging technologies for Co recovery from Li-ion batteries is discussed throughout the manuscript within a broader overview. The study is strictly connected to the Sustainability Development Goals (SDG) number 7, 8, 9, and 12.


2015 ◽  
Vol 6 (1) ◽  
pp. 26-33 ◽  
Author(s):  
Yeon-Joo Kim ◽  
Sang-Min Lee ◽  
Seok Hong Kim ◽  
Hyun-Soo Kim
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document