Electrocatalytic activity and stability of Co and Mn-based oxides for the oxygen reduction reaction in alkaline electrolyte

2013 ◽  
Vol 707 ◽  
pp. 142-150 ◽  
Author(s):  
A.C. Queiroz ◽  
F.H.B. Lima
2018 ◽  
Vol 18 (44) ◽  
pp. 36-40
Author(s):  
Oyunbileg G ◽  
Batnyagt G ◽  
Enkhsaruul B ◽  
T Takeguchi

The oxygen reduction reaction (ORR) is a characteristic reaction which determines the performance of fuel cells which convert a chemical energy into an electrical energy. Aims of this study are to synthesize Au-based nanostars (AuNSs) and determine their preliminary electro-catalytic activities towards ORR by a rotating-disk electrode method in alkaline electrolyte. The images obtained from a scanning electron microscope (SEM) and a transmission electron microscope (TEM) analyses confirm the formation of the star-shaped nanoparticles. Among the investigated nanostar catalysts, an AuNS5 with smaller size and a few branches showed the higher electrocatalytic activity towards ORR than other catalysts with a bigger size. In addition, the electron numbers transferred for all the catalysts are approximately two. The present study results infer that the size of the Au-based nanostars may influence greatly on their catalytic activity. The present study results show that the further improvement is needed for Au-based nanostar catalysts towards the ORR reaction.


2012 ◽  
Vol 70 (22) ◽  
pp. 2342 ◽  
Author(s):  
Longzhen Zheng ◽  
Kun Tao ◽  
Leyan Xiong ◽  
Dan Ye ◽  
Kui Han ◽  
...  

2015 ◽  
Vol 3 (18) ◽  
pp. 10013-10019 ◽  
Author(s):  
Shiming Zhang ◽  
Heyou Zhang ◽  
Xing Hua ◽  
Shengli Chen

Tailored molecular architectures of FePc on nanocarbon supports from nanorods to uniform shells exhibit excellent electrocatalytic activity for the oxygen reduction reaction in alkaline solution.


Catalysts ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 461 ◽  
Author(s):  
Rakesh Sharma ◽  
Verónica Müller ◽  
Marian Chatenet ◽  
Elisabeth Djurado

In this work, hierarchical nanostructured Pr6O11 thin-films of brain-like morphology were successfully prepared by electrostatic spray deposition (ESD) on glassy-carbon substrates. These surfaces were used as working electrodes in the rotating disk electrode (RDE) setup and characterized in alkaline electrolyte (0.1 M NaOH at 25 ± 2 °C) for the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), and the oxygen reduction reaction (ORR) for their potential application in alkaline electrolyzers or in alkaline fuel cells. The electrochemical performances of these electrodes were investigated as a function of their crystallized state (amorphous versus crystalline). Although none of the materials display spectacular HER and OER activity, the results show interesting performances of the crystallized sample towards the ORR with regards to this class of non-Pt group metal (non-PGM) electrocatalysts, the activity being, however, still far from a benchmark Pt/C electrocatalyst.


Sign in / Sign up

Export Citation Format

Share Document