scholarly journals Doped Mesoporous Carbons Derived from Transition Metal Iron and Chitosan as Efficient Non-Precious Cathode Catalysts for Oxygen Reduction Reaction in Alkaline Electrolyte

Author(s):  
Fang Dong ◽  
Enguang Zhang ◽  
Qiaowei Tang ◽  
Qinping Guo ◽  
Jinli Qiao
RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 3174-3182
Author(s):  
Siwei Yang ◽  
Chaoyu Zhao ◽  
Ruxin Qu ◽  
Yaxuan Cheng ◽  
Huiling Liu ◽  
...  

In this study, a novel type oxygen reduction reaction (ORR) electrocatalyst is explored using density functional theory (DFT); the catalyst consists of transition metal M and heteroatom N4 co-doped in vacancy fullerene (M–N4–C64, M = Fe, Co, and Ni).


Catalysts ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 461 ◽  
Author(s):  
Rakesh Sharma ◽  
Verónica Müller ◽  
Marian Chatenet ◽  
Elisabeth Djurado

In this work, hierarchical nanostructured Pr6O11 thin-films of brain-like morphology were successfully prepared by electrostatic spray deposition (ESD) on glassy-carbon substrates. These surfaces were used as working electrodes in the rotating disk electrode (RDE) setup and characterized in alkaline electrolyte (0.1 M NaOH at 25 ± 2 °C) for the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), and the oxygen reduction reaction (ORR) for their potential application in alkaline electrolyzers or in alkaline fuel cells. The electrochemical performances of these electrodes were investigated as a function of their crystallized state (amorphous versus crystalline). Although none of the materials display spectacular HER and OER activity, the results show interesting performances of the crystallized sample towards the ORR with regards to this class of non-Pt group metal (non-PGM) electrocatalysts, the activity being, however, still far from a benchmark Pt/C electrocatalyst.


Sign in / Sign up

Export Citation Format

Share Document