Improving automatic analysis of the electrocardiogram acquired during magnetic resonance imaging using magnetic field gradient artefact suppression

2006 ◽  
Vol 39 (4) ◽  
pp. S134-S139 ◽  
Author(s):  
Roger Abächerli ◽  
Sven Hornaff ◽  
Remo Leber ◽  
Hans-Jakob Schmid ◽  
Jacques Felblinger
2000 ◽  
Vol 71 (11) ◽  
pp. 4263 ◽  
Author(s):  
D. A. Seeber ◽  
J. H. Hoftiezer ◽  
W. B. Daniel ◽  
M. A. Rutgers ◽  
C. H. Pennington

Author(s):  
D.J. Meyerhoff

Magnetic Resonance Imaging (MRI) observes tissue water in the presence of a magnetic field gradient to study morphological changes such as tissue volume loss and signal hyperintensities in human disease. These changes are mostly non-specific and do not appear to be correlated with the range of severity of a certain disease. In contrast, Magnetic Resonance Spectroscopy (MRS), which measures many different chemicals and tissue metabolites in the millimolar concentration range in the absence of a magnetic field gradient, has been shown to reveal characteristic metabolite patterns which are often correlated with the severity of a disease. In-vivo MRS studies are performed on widely available MRI scanners without any “sample preparation” or invasive procedures and are therefore widely used in clinical research. Hydrogen (H) MRS and MR Spectroscopic Imaging (MRSI, conceptionally a combination of MRI and MRS) measure N-acetylaspartate (a putative marker of neurons), creatine-containing metabolites (involved in energy processes in the cell), choline-containing metabolites (involved in membrane metabolism and, possibly, inflammatory processes),


Radiology ◽  
1984 ◽  
Vol 151 (1) ◽  
pp. 127-133 ◽  
Author(s):  
L E Crooks ◽  
M Arakawa ◽  
J Hoenninger ◽  
B McCarten ◽  
J Watts ◽  
...  

2002 ◽  
Vol 27 (2) ◽  
pp. 165-170 ◽  
Author(s):  
M. GANAPATHI ◽  
G. JOSEPH ◽  
R. SAVAGE ◽  
A. R. JONES ◽  
B. TIMMS ◽  
...  

Metal implants produce susceptibility artefacts in magnetic resonance imaging. We have explored the effects of scaphoid screw characteristics and orientation on MR susceptibility artefact. Titanium alloy, smallness and longitudinal alignment with the z-axis of the main magnetic field reduce the size of the susceptibility artefact.


Sign in / Sign up

Export Citation Format

Share Document