metal implants
Recently Published Documents


TOTAL DOCUMENTS

416
(FIVE YEARS 124)

H-INDEX

36
(FIVE YEARS 5)

Author(s):  
E. N. Ovchinnikov ◽  
N. V. Godovykh ◽  
O. V. Dyuryagina ◽  
M. V. Stogov ◽  
D. N. Ovchinnikov ◽  
...  

2021 ◽  
Vol 39 (1) ◽  
pp. 81-96
Author(s):  
Varun Sadaphal ◽  
Bibin Prasad ◽  
Walker Kay ◽  
Lisa Nehring ◽  
Trung Nyugen ◽  
...  

Author(s):  
Валентина Константиновна Крутько ◽  
Анна Евгеньевна Дорошенко ◽  
Ольга Николаевна Мусская ◽  
Сергей Михайлович Рабчинский ◽  
Анатолий Иосифович Кулак

Методом электрохимического осаждения на титановых пластинах при комнатной температуре в двухэлектродной ячейке при постоянной плотности тока 30 мА/см и времени осаждения 10 мин получены кальцийфосфатные покрытия: брушитные в системе Ca (NO )/ NH H PO при pH = 4 и композитные (брушит/кальцит/апатит) в системе CaCOjCa (HPO ) при pH = 5. Выдерживанием кальцийфосфатных покрытий обоих типов в модельном растворе SBF в течение 1 месяца определяли апатитообразующую способность (биоактивность). Новообразованный аморфизированный апатитовый слой после термообработки при 800°С кристаллизовался в Д -трикальцийфосфат/гидроксиапатит на брушитных покрытиях и в гидроксиапатит на композитных покрытиях за счет присутствия кальцита, карбонат-ионы которого являются инициаторами образования гидроксиапатита, а также апатитных наночастиц в исходном покрытии. Полученные кальцийфосфатные покрытия перспективны в качестве биопокрытий повышающих остеоинтеграцию металлических имплантатов. Calcium phosphate coatings on titanium plates were obtained by electrochemical deposition at room temperature in a two-electrode cell at a constant current density of 30 mA/sm and a deposition time of 10 min, and brushite coatings from Ca (NO )/NHHPO system at pH = 4, and composite (brushite/calcite/apatite) coatings from the CaCO/ Ca(HPO) system at pH = 5. The apatite-forming ability (bioactivity) was determined by soaking both types of calcium phosphate coatings in a model SBF solution during month. The newly formed amorphized apatite layer after heat treatment at 800 °С crystallized into p -tricalcium phosphate/hydroxyapatite on brushite coatings and hydroxyapatite on composite coatings due to the presence of calcite, whose carbonate ions initiate formation of hydroxyapatite, as well as apatite nanoparticles in the initial coating. The obtained calcium phosphate coatings are promising as biocoatings capable to increase osseointegration of metal implants.


2021 ◽  
pp. 088532822110518
Author(s):  
Taufin Warindra ◽  
Mouli Edward ◽  
Kukuh Dwiputra Hernugrahanto ◽  
Fedik Abdul Rantam ◽  
Ferdiansyah Mahyudin ◽  
...  

The most widely used biomaterials in the treatment of massive bone defects are allograft bone or metal implants. The current problem is that the availability of allographs is limited and metal implants are very expensive. Mass production of secretome can make bone reconstruction of massive bone defects using a scaffold more effective and efficient. This study aims to prove bone regeneration in massive bone defects using bovine hydroxyapatite reconstruction with normoxic and hypoxic secretome conditions using collagen type 1 (COL1), alkaline phosphate (ALP), osteonectin (ON), and osteopontin (OPN) parameters. This is an in vivo study using male New Zealand white rabbits aged 6–9 months. The research was carried out at the Biomaterials Center—Tissue Bank, Dr. Soetomo Hospital for the manufacturer of bovine hydroxyapatite (BHA) and secretome BM-MSC culture under normoxic and hypoxic conditions, and UNAIR Tropical Disease Institute for implantation in experimental animals. Data analysis was carried out with the one-way ANOVA statistical test and continued with the Post Hoc test LSD statistical test to determine whether or not there were significant differences between groups. There were significant differences between hypoxic to normoxic group and hypoxic to BHA group at day-30 observation using ALP, COL 1, ON, and OPN parameters. Meanwhile, there is only osteonectin parameter has significant difference at day-30 observation. At day-60 observation, only OPN parameter has significant differences between hypoxic to normoxic and hypoxic to BHA group. Between day-30 and day-60 observation, BHA and normoxic groups have a significant difference at all parameters, but in hypoxic group, there are only difference at ALP, COL 1, and ON parameters. Hypoxic condition BM-MSC secretome with BHA composite is superior and could be an option for treating bone defect.


Cartilage ◽  
2021 ◽  
pp. 194760352110638
Author(s):  
Maria Pastrama ◽  
Janne Spierings ◽  
Pieter van Hugten ◽  
Keita Ito ◽  
Richard Lopata ◽  
...  

Objective This study aims to evaluate the applicability of the ultrasound roughness index (URI) for quantitative assessment of cartilage quality ex vivo (post-mortem), after 6 months of in vivo articulation with a Focal Knee Resurfacing Implant (FKRI). Design Goats received a metal FKRI ( n = 8) or sham surgery ( n = 8) in the medial femoral condyles. After 6 months animals were sacrificed, tibial plateaus were stained with Indian ink, and macroscopic scoring of the plateaus was performed based on the ink staining. The URI was calculated from high-frequency ultrasound images at several sections, covering both areas that articulated with the implant and non-articulating areas. Cartilage quality at the most damaged medial location was evaluated with a Modified Mankin Score (MMS). Results The URI was significantly higher in the FKRI-articulating than in the sham plateaus at medial articulating sections, but not at sections that were not in direct contact with the implant, for example, under the meniscus. The mean macroscopic score and MMS were significantly higher in the FKRI-articulating group than in the sham group ([Formula: see text], [Formula: see text], respectively). Correlation coefficients between URI and macroscopic score were significant in medial areas that articulated with the implant. A significant correlation between URI and MMS was found at the most damaged medial location ([Formula: see text]). Conclusions This study demonstrates the potential of URI to evaluate cartilage roughness and altered surface morphology after in vivo articulation with a metal FKRI, rendering it a promising future tool for quantitative follow-up assessment of cartilage quality.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1522
Author(s):  
Elena Ungureanu ◽  
Diana Maria Vranceanu ◽  
Alina Vladescu ◽  
Anca Constantina Parau ◽  
Mihai Tarcolea ◽  
...  

Hydroxyapatite (HAp) is the most widely used calcium phosphate as a coating on metal implants due to its biocompatibility and bioactivity. The aim of this research is to evaluate the effect of the pH’s electrolyte and doping element on the morphology, roughness, chemical, and phasic composition of hydroxyapatite-based coatings obtained by pulsed galvanostatic electrochemical deposition. As doping elements, both Sr and Ag were selected due to their good osseoinductive character and antibacterial effect, respectively. The electrolytes were prepared at pH 4 and 5, in which specific concentrations of Sr, Ag, and Sr + Ag were added. In terms of morphology, all coatings consist in ribbon-like crystals, which at pH 5 appear to be a little larger. Addition of Sr did not affect the morphology of HAp, while Ag addition has led to the formation of flower-like crystals agglomeration. When both doping elements were added, the flowers like agglomerations caused by the Ag have diminished, indicating the competition between Sr and Ag. X-Ray Diffraction analysis has highlighted that Sr and/or Ag have successfully substituted the Ca in the HAp structure. Moreover, at higher pH, the crystallinity of all HAp coatings was enhanced. Thus, it can be said that the electrolyte’s pH enhances to some extent the properties of HAp-based coatings, while the addition of Sr and/or Ag does not negatively impact the obtained features of HAp, indicating that by using pulsed galvanostatic electrochemical deposition, materials with tunable features dictated by the function of the coated medical device can be designed.


2021 ◽  
Author(s):  
Borja Mercadal ◽  
Ricardo Salvador ◽  
Maria Chiara Biagi ◽  
Fabrice Bartolomei ◽  
Fabrice Wendling ◽  
...  

AbstractBackgroundMetal implants impact the dosimetry assessment in electrical stimulation techniques. Therefore, they need to be included in numerical models. While currents in the body are ionic, metals only allow electron transport. In fact, charge transfer between tissues and metals requires electric fields to drive the electrochemical reactions at the interface. Thus, metal implants may act as insulators or as conductors depending on the scenario.Objective/HypothesisThe aim of this paper is to provide a theoretical argument that guides the choice of the correct representation of metal implants using purely electrical models but considering the electrochemical nature of the problem in the technology of interest.MethodsWe built a simple model of a metal implant exposed to a homogeneous electric field of various magnitudes to represent both weak (e.g., tDCS), medium (TMS) or strong field stimulation. The same geometry was solved using two different models: a purely electric one (with different conductivities for the implant), and an electrochemical one. As an example of application, we also modeled a transcranial electrical stimulation (tES) treatment in a realistic head model with a skull plate using a high and low conductivity value for the plate.ResultsMetal implants generally act as electric insulators when exposed to electric fields up to around 100 V/m (tES and TMS range) and they only resemble a perfect conductor for fields in the order of 1000 V/m and above. The results are independent of the implant’s metal, but they depend on its geometry.Conclusion(s)Metal implants can be accurately represented by a simple electrical model of constant conductivity, but an incorrect model choice can lead to large errors in the dosimetry assessment. In particular, tES modeling with implants incorrectly treated as conductors can lead to errors of 50% in induced fields or more. Our results can be used as a guide to select the correct model in each scenario.


Biomimetics ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 65
Author(s):  
Ansheed A. Raheem ◽  
Pearlin Hameed ◽  
Ruban Whenish ◽  
Renold S. Elsen ◽  
Aswin G ◽  
...  

Biomimetics is an emerging field of science that adapts the working principles from nature to fine-tune the engineering design aspects to mimic biological structure and functions. The application mainly focuses on the development of medical implants for hard and soft tissue replacements. Additive manufacturing or 3D printing is an established processing norm with a superior resolution and control over process parameters than conventional methods and has allowed the incessant amalgamation of biomimetics into material manufacturing, thereby improving the adaptation of biomaterials and implants into the human body. The conventional manufacturing practices had design restrictions that prevented mimicking the natural architecture of human tissues into material manufacturing. However, with additive manufacturing, the material construction happens layer-by-layer over multiple axes simultaneously, thus enabling finer control over material placement, thereby overcoming the design challenge that prevented developing complex human architectures. This review substantiates the dexterity of additive manufacturing in utilizing biomimetics to 3D print ceramic, polymer, and metal implants with excellent resemblance to natural tissue. It also cites some clinical references of experimental and commercial approaches employing biomimetic 3D printing of implants.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6609
Author(s):  
Izabela Matuła ◽  
Grzegorz Dercz ◽  
Maciej Sowa ◽  
Adrian Barylski ◽  
Piotr Duda

In view of the aging population and various diseases worldwide, the demand for implants has been rapidly increasing. Despite the efforts of doctors, engineers, and medical companies, the fabrication of and procedures associated with implants have not yet been perfected. Therefore, a high percentage of premature implantations has been observed. The main problem with metal implants is the mechanical mismatch between human bone and the implant material. Zirconium/titanium-based materials with graded porosity and composition were prepared by powder metallurgy. The whole samples are comprised of three zones, with a radial gradient in the phase composition, microstructure, and pore structure. The samples were prepared by a three-step powder metallurgy method. The microstructure and properties were observed to change gradually with the distance from the center of the sample. The x-ray diffraction analysis and microstructure observation confirmed the formation of diffusive connections between the particular areas. Additionally, the mechanical properties of the obtained materials were checked, with respect to the distance from the center of the sample. An analysis of the corrosion properties of the obtained materials was also carried out.


2021 ◽  
Vol 877 (1) ◽  
pp. 012055
Author(s):  
Sura B. Mohammed ◽  
Abdulraheem K. AbidAli

Abstract Metal implants made of titanium and its alloys need surface modification operations because they are weak in terms of osseointegration and to protect them from corrosive body fluids and the growth of harmful bacteria that prevent them from performing their function and cause their failure. Hydroxyapatite and titanium dioxide have proven high efficiency by using them as biological and anti-bacterial coating. The basis of the current study is to deposit a functionally graded ceramic coating of titanium dioxide and hydroxyapatite on a Ti6Al4V substrate by electrophoretic deposition (EPD) method at room temperature with optimal conditions of 20 volts and a deposition time of 1 minute, and then sintering in an atmosphere of argon at a temperature of 950°C for one hour. In addition, polarisation, open circuit, anti-bacterial activity, XRD, SEM, EDS was conducted. The laboratory results showed that the corrosion rate decreases for the coated samples compared to the uncoated. As for the SEM examination, the cross-section images showed that the gradient coating is dense, cohesive and free from microscopic cracks. Also, the surface images showed that the surface was uniform. In terms of XRD, the results showed the presence of rutile, anatase, and hydroxyapatite phases in addition to α_CaPO and β_TCP as a result of HAp decomposition. For the anti-bacterial examination, the findings revealed that the coating is anti-bacterial.


Sign in / Sign up

Export Citation Format

Share Document