scholarly journals Performance of absorption coefficient measurements for the in situ determination of chlorophyll-a and total suspended matter

2014 ◽  
Vol 453 ◽  
pp. 138-147 ◽  
Author(s):  
Jochen Wollschläger ◽  
Rüdiger Röttgers ◽  
Wilhelm Petersen ◽  
Karen H. Wiltshire
2020 ◽  
Vol 32 ◽  
pp. 53-63
Author(s):  
Stefan Kazakov ◽  
Valko Biserkov ◽  
Luchezar Pehlivanov ◽  
Stoyan Nedkov

The aim of the study was to compare in situ and remote sensing data, in order to assess the applicability of satellite images in water quality monitoring of floodplain lakes. Two indicators of trophic status were compared: chlorophyll a and total suspended matter. Two lakes on Lower Danube floodplain were selected: Srebarna and Malak Preslavets. Data were obtained in July and August 2018. Sentinel 2 MSI L1c images were analyzed in SeNtinel Application Platform (SNAP), (v. 6.0). According to in situ data, Srebarna Lake indicated status of eutrophication, while Malak Preslavets experienced hypertrophic conditions. Satellite data indicated eutrophic conditions for both lakes. Comparing the results from in situ and satellite data, chlorophyll a showed higher correlation (r = 0.66) and comparable results. On the other hand, significantly overestimation of suspended matter according to satellite data were found, as well weaker correlation (r = 0.57) between both methods. Remote sensing i.e. Sentinel products are emerging as a powerful tool in environmental observation. Although weather conditions could have significant impact on environmental dynamic especially in floodplain lakes, combining and comparing of different methods could improve the preciseness of the methodology as well as assessment reliability.


2007 ◽  
Vol 4 (5) ◽  
pp. 853-868 ◽  
Author(s):  
Y. Huot ◽  
M. Babin ◽  
F. Bruyant ◽  
C. Grob ◽  
M. S. Twardowski ◽  
...  

Abstract. Probably because it is a readily available ocean color product, almost all models of primary productivity use chlorophyll as their index of phytoplankton biomass. As other variables become more readily available, both from remote sensing and in situ autonomous platforms, we should ask if other indices of biomass might be preferable. Herein, we compare the accuracy of different proxies of phytoplankton biomass for estimating the maximum photosynthetic rate (Pmax) and the initial slope of the production versus irradiance (P vs. E) curve (α). The proxies compared are: the total chlorophyll a concentration (Tchla, the sum of chlorophyll a and divinyl chlorophyll), the phytoplankton absorption coefficient, the phytoplankton photosynthetic absorption coefficient, the active fluorescence in situ, the particulate scattering coefficient at 650 nm (bp(650)), and the particulate backscattering coefficient at 650 nm (bbp(650)). All of the data (about 170 P vs. E curves) were collected in the South Pacific Ocean. We find that when only the phytoplanktonic biomass proxies are available, bp(650) and Tchla are respectively the best estimators of Pmax and α. When additional variables are available, such as the depth of sampling, the irradiance at depth, or the temperature, Tchla is the best estimator of both Pmax and α.


1999 ◽  
Vol 38 (36) ◽  
pp. 7355 ◽  
Author(s):  
Andrew H. Barnard ◽  
J. Ronald V. Zaneveld ◽  
W. Scott Pegau

Sign in / Sign up

Export Citation Format

Share Document