Recovery of valuable metals from spent mobile phone printed circuit boards using biochar in indirect bioleaching

2021 ◽  
Vol 280 ◽  
pp. 111642
Author(s):  
Saeede Kadivar ◽  
Fatemeh Pourhossein ◽  
Seyyed Mohammad Mousavi
2020 ◽  
Vol 22 (20) ◽  
pp. 7080-7092
Author(s):  
Peng Peng ◽  
Ah-Hyung Alissa Park

Supercritical CO2-induced treatment of heterogeneous waste printed circuit boards resulted in selective recoveries of Au, Ni and Cu.


Recycling ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 36 ◽  
Author(s):  
Ayorinde Emmanuel Ajiboye ◽  
Folorunsho Emmanuel Olasehinde ◽  
Ojo Albert Adebayo ◽  
Olubode John Ajayi ◽  
Malay Kumar Ghosh ◽  
...  

The recovery of valuable metals from waste printed circuit boards (WPCBs) is crucial in order to harness their economic resources, and prevents potential environmental contamination. However, selective extraction of Cu and Zn, and the co-extraction of other metals as impurities at ambient temperature using selected lixiviants such as HCl, H2SO4, HNO3, trifluoromethanesulfonic acid (TFMS), NaOH, and mixtures of NaCl and CuCl2 was studied. It is shown that the extraction efficiencies of all the metals increased with increases in lixiviant concentrations. High selectivity of Cu and Zn toward Fe were achieved in dilute H2SO4, HNO3, TFMS, and 0.5 M NaCl + 0.1 M CuCl2, and low dissolution of Pb (<5%) was observed in all H2SO4 lixiviants. Almost 100% Zn extraction using NaOH lixiviants without trace of other metals was achieved. Therefore, 0.5 M NaCl + 0.5 M CuCl2, 1.0 M HNO3, 0.5 M H2SO4, and 1.0 M TFMS showed high extraction selectivity toward Cu and Zn with low chemical consumption, and produced pregnant leach solution rich in Cu and Zn, as well as residue containing Fe, Ni, and other metals.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 462 ◽  
Author(s):  
Hao Cui ◽  
Corby Anderson

This paper demonstrates the recovery of valuable metals from shredded Waste Printed Circuit Boards (WPCBs) by bromine leaching. Effects of sodium bromide concentration, bromine concentration, leaching time and inorganic acids were investigated. The most critical factors are sodium concentration and bromine concentration. It was found that more than 95% of copper, silver, lead, gold and nickel could be dissolved simultaneously under the optimal conditions: 50 g/L solid/liquid ratio, 1.17 M NaBr, 0.77 M Br2, 2 M HCl, 400 RPM agitation speed and 23.5 °C for 10 hours. The study shows that the dissolution of gold from waste printed circuit boards in a Br2-NaBr system is controlled by film diffusion and chemical reaction.


Sign in / Sign up

Export Citation Format

Share Document