Natural and artificial radionuclides in sludge, sand, granular activated carbon and reverse osmosis brine from a metropolitan drinking water treatment plant

2017 ◽  
Vol 177 ◽  
pp. 233-240 ◽  
Author(s):  
Dani Mulas ◽  
Antonia Camacho ◽  
Isabel Serrano ◽  
Sergio Montes ◽  
Ricard Devesa ◽  
...  
2010 ◽  
Vol 61 (10) ◽  
pp. 2603-2610 ◽  
Author(s):  
F. Schoonenberg Kegel ◽  
B. M. Rietman ◽  
A. R. D. Verliefde

Drinking water utilities in Europe are faced with a growing presence of organic micropollutants in their water sources. The aim of this research was to assess the robustness of a drinking water treatment plant equipped with reverse osmosis and subsequent activated carbon filtration for the removal of these pollutants. The total removal efficiency of 47 organic micropollutants was investigated. Results indicated that removal of most organic micropollutants was high for all membranes tested. Some selected micropollutants were less efficiently removed (e.g. the small and polar NDMA and glyphosate, and the more hydrophobic ethylbenzene and napthalene). Very high removal efficiencies for almost all organic micropollutants by the subsequent activated carbon, fed with the permeate stream of the RO element were observed except for the very small and polar NDMA and 1,4-dioxane. RO and subsequent activated carbon filtration are complementary and their combined application results in the removal of a large part of these emerging organic micropollutants. Based on these experiments it can be concluded that the robustness of a proposed treatment scheme for the drinking water treatment plant Engelse Werk is sufficiently guaranteed.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 173-180 ◽  
Author(s):  
I. Kasuga ◽  
D. Shimazaki ◽  
S. Kunikane

The influence of backwashing on the biofilm community developed on biological activated carbon (BAC) used in a drinking water treatment plant was investigated by means of bacterial cell enumeration and terminal-restriction fragment length polymorphism (T-RFLP) fingerprinting analysis of bacterial and eukaryotic ribosomal RNA genes (rDNA). After backwashing, the attached bacterial abundance in the top layer of the BAC bed decreased to 64% of that before backwashing. The community level changes caused by backwashing were examined through the T-RFLP profiles. In the bacterial 16S rDNA analysis, the relative abundances of some terminal-restriction fragments (T-RFs) including the Planctomycetes-derived fragment increased; however, the relative abundances of some T-RFs including the Betaproteobacteria-derived fragments decreased. In the eukaryotic 18S rDNA analysis, the relative abundances of some T-RFs including the protozoan Cercozoa-derived fragments increased; however, the relative abundances of some T-RFs including the metazoan Chaetonotus- and Paratripyla-derived fragments decreased. The T-RFLP analysis suggests that backwashing can cause changes in the relative compositions of microorganisms in a BAC biofilm in the top layer of the bed.


Sign in / Sign up

Export Citation Format

Share Document