chlorination process
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 38)

H-INDEX

12
(FIVE YEARS 3)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 656
Author(s):  
Wei-Sheng Chen ◽  
Chih-Yuan Hsiao ◽  
Cheng-Han Lee

Electronic products are ever growing in popularity, and tantalum capacitors are heavily used in small electronic products. Spent epoxy-coated solid electrolyte tantalum capacitors, containing about 22 wt.% of tantalum and 8 wt.% of manganese, were treated with selective leaching by hydrochloric acid and chlorination after removing the epoxy resin, and the products converted, respectively, to Mn(OH)2 and TaCl5. The effects of acid type, acid concentration, liquid–solid ratio, and reaction time were investigated to dissolve the manganese. The optimal selective leaching conditions were determined as 3 mol/L of HCl, 40 mL/g at 25 °C for 32 min. Next, residues of selective leaching after washing and drying were heated with ferrous chloride to convert to pure TaCl5. Mixing 48 wt.% of chloride and 52 wt.% of residues for a total of 5 g was conducted to complete the chlorination process in the tube furnace at 450 °C for 3 h. A total of 2.35 g of Ta was collected and the recovery of Ta achieved 94%. Finally, Mn(OH)2 and TaCl5 were separated and purified as the products.


2021 ◽  
Vol 14 (1) ◽  
pp. 293
Author(s):  
Feng Chen ◽  
Changlin Liu ◽  
Yuekai Wen ◽  
Fuxing Zhu ◽  
Hongguo Yao ◽  
...  

The titanium resources in Panxi reign, China, have a high-impurities content of Ca and Mg, which is usually processed by the molten salt chlorination process. This process allows higher Ca and Mg content in its furnace burdens. However, there is a huge amount of molten salt chlorinated slag produced by this process, consisting of complex compounds and waste NaCl/KCl salts. These slags are always stockpiled without efficient utilization, causing serious environmental pollutions. To recycle the NaCl in the slag back to the molten salt chlorination process, a novel process to deal with those molten salt chlorinated slags with phase conversion at high temperature is presented in this paper. The calcium-containing solid phase was generated when Na2SiO3 was added to the molten salt chlorinated slags at high temperature, while NaCl was kept as a liquid. Thus, liquid NaCl was easily separated from the calcium-containing solid phase, and it could be reused in the molten salt chlorination process. The conversion of calcium-containing phases and their separation of NaCl are the key parts of this work, and they have been systematically studied in this paper; thermodynamic analysis, phase transformation behavior, and calcium removal behavior have all been investigated. The calcium removal rate is 78.69% when the molar ratio of CaCl2:Na2SiO3 is 1:1.5 at 1173 K and N2 atmosphere.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 2967
Author(s):  
Kun Xiang ◽  
Pan Geng ◽  
Xuan Sun ◽  
Shasha Yuan ◽  
Peng Du ◽  
...  

The biofilms generated in a fire extinguishing water supply system can cause corrosion and a reduction in the water supply capacity; thus, degrading the system performance. To mitigate microbial corrosion, appropriate disinfection measures are necessary. In this study, the secondary addition of chlorine is employed to investigate the kinetics of chlorine decay, and shock disinfection is applied to investigate the removal efficiency of corrosion bacteria, and the microbial composition of a biofilm on the pipe wall was also clarified. The results show that the residual chlorine content in the secondary chlorination process was directly correlated with the decay rate of residual chlorine and the corrosion rate of the pipe wall. Additionally, the chlorine impact disinfection method could reduce the electrochemical corrosion phenomenon of the pipe wall. When the concentration of chlorine was 3 mg/L, the removal rate of corrosion bacteria was higher in 60 min than in 30 min. Specifically, most of the bacteria were inactivated in 60 min and the biofilm was severely damaged. Shock disinfection could significantly inactivate all microflora in the biofilm; the relative abundances of microflora varied significantly, while the change of microflora at the phylum level was insignificant. This study can provide theoretical support for the secondary addition of chlorine and shock disinfection in a fire extinguishing water supply system.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2141
Author(s):  
Stavroula Tsitsifli ◽  
Vasilis Kanakoudis

Disinfection is one of the most important water treatment processes as it inactivates pathogens providing safe drinking water to the consumers. A fresh-water distribution network is a complex system where constant monitoring of several parameters and related managerial decisions take place in order for the network to operate in the most efficient way. However, there are cases where some of the decisions made to improve the network’s performance level, such as reduction of water losses, may have negative impacts on other significant operational processes such as the disinfection. In particular, the division of a water distribution network into district metered areas (DMAs) and the application of various pressure management measures may impact the effectiveness of the water chlorination process. Two operational measures are assessed in this paper: (a) the use of inline chlorination boosters to achieve more efficient chlorination; and (b) how the DMAs formation impacts the chlorination process. To achieve this, the water distribution network of a Greek town is chosen as a case study where several scenarios are being thoroughly analyzed. The assessment process utilizes the network’s hydraulic simulation model, which is set up in Watergems V8i software, forming the baseline to develop the network’s water quality model. The results proved that inline chlorination boosters ensure a more efficient disinfection, especially at the most remote parts/nodes of the network, compared to conventional chlorination processes (e.g., at the water tanks), achieving 100% safe water volume and consuming almost 50% less chlorine mass. DMAs’ formation results in increased water age values up to 8.27%, especially at the remote parts/nodes of the network and require more time to achieve the necessary minimum effective chlorine concentration of 0.2 mg/L. However, DMAs formation and pressure management measures do not threaten the chlorination’s efficiency. It is important to include water age and residual chlorine as criteria when optimizing water pressure and the division of DMAs.


2021 ◽  
Vol 3 (1) ◽  
pp. 10-18
Author(s):  
Iuliana Paun ◽  
◽  
Florentina Laura Chiriac ◽  
Vasile Ion Iancu ◽  
Florinela Pirvu ◽  
...  

Chlorine is widely used in Romania and all over the world as a disinfectant of drinking water. During the chlorination process, the natural organic matter and inorganic ions react with chlorine forming disinfection by-products (DBPs). The predominant organic disinfection by-products are trihalomethanes (THMs) while the main inorganic disinfection by-products are chlorate and chlorite ions. THMs were detected in all investigated drinking water samples from Bucharest distribution system with values from 27.8 µg/L up to 75.1 µg/L, which are below the maximum concentration value admitted by Romanian drinking water legislation of 100 µg/L. Chloroform constitutes the major component in total THMs concentration found in all tested drinking water. Chlorate and chlorite anions were not detected in any of the investigated drinking water samples. THMs concentration was correlated with total organic carbon (TOC), residual chlorine and chloride.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3422
Author(s):  
Giovanni Luongo ◽  
Lorenzo Saviano ◽  
Giovanni Libralato ◽  
Marco Guida ◽  
Antonietta Siciliano ◽  
...  

In recent years, many studies have reported the frequent detection of antihypertensive agents such as sartans (olmesartan, valsartan, irbesartan and candesartan) in the influents and effluents of wastewater treatment plants (WWTPs) and in the superficial waters of rivers and lakes in both Europe and North America. In this paper, the degradation pathway for candesartan (CAN) was investigated by simulating the chlorination process that is normally used to reduce microbial contamination in a WWTP. Twelve isolated degradation byproducts (DPs), four of which were isolated for the first time, were separated on a C-18 column by employing a gradient HPLC method, and their structures were identified by combining nuclear magnetic resonance and mass spectrometry and comparing the results with commercial standards. On the basis of these results, a mechanism of formation starting from the parent drug is proposed. The ecotoxicity of CAN and its DPs was studied by conducting a battery of ecotoxicity tests; bioassays were performed using Aliivibrio fischeri (bacterium), Daphnia magna (planktonic crustacean) and Raphidocelis subcapitata (alga). The ecotoxicity results shed new light on the increased toxicity of DPs compared with the parent compound.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1769
Author(s):  
Giovanni Luongo ◽  
Antonietta Siciliano ◽  
Giovanni Libralato ◽  
Sara Serafini ◽  
Lorenzo Saviano ◽  
...  

The discovery of various sartans, which are among the most used antihypertensive drugs in the world, is increasingly frequent not only in wastewater but also in surface water and, in some cases, even in drinking or groundwater. In this paper, the degradation pathway of olmesartan acid, one of the most used sartans, was investigated by simulating the chlorination process normally used in a wastewater treatment plant to reduce similar emerging pollutants. The structures of nine isolated degradation byproducts (DPs), eight of which were isolated for the first time, were separated via chromatography column and HPLC methods, identified by combining nuclear magnetic resonance and mass spectrometry, and justified by a proposed mechanism of formation beginning from the parent drug. Ecotoxicity tests on olmesartan acid and its nine DPs showed that 50% of the investigated byproducts inhibited the target species Aliivibrio fischeri and Raphidocelis subcapitata, causing functional decreases of 18% and 53%, respectively.


Sign in / Sign up

Export Citation Format

Share Document