biological activated carbon
Recently Published Documents


TOTAL DOCUMENTS

357
(FIVE YEARS 63)

H-INDEX

31
(FIVE YEARS 8)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 129
Author(s):  
Yen-Hui Lin ◽  
Bing-Han Ho

The kinetics and performance of a biological activated carbon (BAC) reactor were evaluated to validate the proposed kinetic model. The Freundlich adsorption capacity (Ka) and adsorption intensity constants (n) obtained from the batch experiments were 1.023 ± 0.134 (mg/g) (L/mg)1/n and 2.036 ± 0.785, respectively. The effective diffusivity (Ds) of the substrate within the activated carbon was determined by comparing the adsorption model value with the experimental data to find the best fit value (4.3 × 10–4 cm2/d). The batch tests revealed that the yield coefficient (Y) was 0.18 mg VSS/mg COD. Monod and Haldane kinetics were applied to fit the experimental data and determine the biokinetic constants, such as the maximum specific utilization rate (k), half-saturation constant (KS), inhibition constant (Ki), and biomass death rate coefficient (kd). The results revealed that the Haldane kinetics fit the experimental data better than the Monod kinetics. The values of k, KS, Ki, and kdwere 3.52 mg COD/mg VSS-d, 71.7 mg COD/L, 81.63 mg COD/L, and 4.9 × 10−3 1/d, respectively. The BAC reactor had a high COD removal efficiency of 94.45% at a steady state. The average influent color was found to be 62 ± 22 ADMI color units, and the color removal efficiency was 73‒100% (average 92.3 ± 10.2%). The removal efficiency for ammonium was 73.9 ± 24.4%, while the residual concentration of ammonium in the effluent was 1.91 ± 2.04 mg/L. The effluent quality from the BAC reactor could meet the discharge standard and satisfy the reuse requirements of textile dye wastewater.


2021 ◽  
pp. 126840
Author(s):  
Laura Piai ◽  
Alette Langenhoff ◽  
Mingyi Jia ◽  
Vinnie de Wilde ◽  
Albert van der Wal

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiajia Wu ◽  
Kejia Zhang ◽  
Cheng Cen ◽  
Xiaogang Wu ◽  
Ruyin Mao ◽  
...  

AbstractThe occurrence of a variety of organic pollutants has complicated wastewater treatment; thus, the search for sustainable and effective treatment technology has drawn significant attention. In recent years, bulk nanobubbles, which have extraordinary properties differing from those of microbubbles, including high stability and long residence times in water, large specific surface areas, high gas transfer efficiency and interface potential, and the capability to generate free radicals, have shown attractive technological advantages and promising application prospects for wastewater treatment. In this review, the basic characteristics of bulk nanobubbles are summarized in detail, and recent findings related to their implementation pathways and mechanisms in organic wastewater treatment are systematically discussed, which includes improving the air flotation process, increasing water aeration to promote aerobic biological technologies including biological activated carbon, activated sludge, and membrane bioreactors, and generating active free radicals that oxidise organic compounds. Finally, the current technological difficulties of bulk nanobubbles are analysed, and future focus areas for research on bulk nanobubble technology are also proposed.


Sign in / Sign up

Export Citation Format

Share Document