Distribution and behaviour of naturally occurring radionuclides within a Scots pine forest grown on a CaF2 waste deposit related to the Belgian phosphate industry

2021 ◽  
Vol 233 ◽  
pp. 106591
Author(s):  
Nathalie Vanhoudt ◽  
Axel Van Gompel ◽  
Jordi Vives i Batlle
1988 ◽  
Vol 53 ◽  
Author(s):  
N. Lust

The  study deals with the spontaneous resettlement of a fire area, after  destruction of 600 ha Scots pine forest. The following items have been  examined in particular: the composition of the tree species, the duration of  the regeneration period, the influence of the parent stand, the exposition,  the slope, the treatment, the fire regime and the social differentiation.      The resettlement took place very quickly and over a very short period.  Birch and Scots pine take up 95 % of the stem number. The regeneration result  is precarious, yet mostly good. The parent stand is favourable both to seed  supply and to microclimate, but only over a short distance. The Scots pine  prefers more open and dry areas, whereas birch needs more humidity.     Practice has shown that natural regeneration of Scots pine stands is  possible. The forest treatment, however, is very important. It determines not  only the immediate result of the regeneration, but also the composition and  the structure of the future stand.


2002 ◽  
Vol 167 (1-3) ◽  
pp. 123-134 ◽  
Author(s):  
K Butterbach-Bahl ◽  
L Breuer ◽  
R Gasche ◽  
G Willibald ◽  
H Papen

2008 ◽  
Vol 148 (11) ◽  
pp. 1815-1826 ◽  
Author(s):  
Jutta Holst ◽  
Romain Barnard ◽  
Elke Brandes ◽  
Nina Buchmann ◽  
Arthur Gessler ◽  
...  

1992 ◽  
Vol 23 (13-14) ◽  
pp. 1575-1589 ◽  
Author(s):  
A. P. Rowland ◽  
A. F. Harrison ◽  
V. H. Kennedy ◽  
J. N. Cape

2001 ◽  
Vol 65 (6) ◽  
pp. 1812-1823 ◽  
Author(s):  
Live S. Vestgarden ◽  
Gunnar Abrahamsen ◽  
Arne O. Stuanes

2015 ◽  
Vol 6 (2) ◽  
pp. 485-503 ◽  
Author(s):  
M. H. Vermeulen ◽  
B. J. Kruijt ◽  
T. Hickler ◽  
P. Kabat

Abstract. The vegetation–atmosphere carbon and water exchange at one particular site can strongly vary from year to year, and understanding this interannual variability in carbon and water exchange (IAVcw) is a critical factor in projecting future ecosystem changes. However, the mechanisms driving this IAVcw are not well understood. We used data on carbon and water fluxes from a multi-year eddy covariance study (1997–2009) in a Dutch Scots pine forest and forced a process-based ecosystem model (Lund–Potsdam–Jena General Ecosystem Simulator; LPJ-GUESS) with local data to, firstly, test whether the model can explain IAVcw and seasonal carbon and water exchange from direct environmental factors only. Initial model runs showed low correlations with estimated annual gross primary productivity (GPP) and annual actual evapotranspiration (AET), while monthly and daily fluxes showed high correlations. The model underestimated GPP and AET during winter and drought events. Secondly, we adapted the temperature inhibition function of photosynthesis to account for the observation that at this particular site, trees continue to assimilate at very low atmospheric temperatures (up to daily averages of −10 °C), resulting in a net carbon sink in winter. While we were able to improve daily and monthly simulations during winter by lowering the modelled minimum temperature threshold for photosynthesis, this did not increase explained IAVcw at the site. Thirdly, we implemented three alternative hypotheses concerning water uptake by plants in order to test which one best corresponds with the data. In particular, we analyse the effects during the 2003 heatwave. These simulations revealed a strong sensitivity of the modelled fluxes during dry and warm conditions, but no single formulation was consistently superior in reproducing the data for all timescales and the overall model–data match for IAVcw could not be improved. Most probably access to deep soil water leads to higher AET and GPP simulated during the heatwave of 2003. We conclude that photosynthesis at lower temperatures than assumed in most models can be important for winter carbon and water fluxes in pine forests. Furthermore, details of the model representations of water uptake, which are often overlooked, need further attention, and deep water access should be treated explicitly.


2019 ◽  
Vol 10 ◽  
Author(s):  
Ivano Brunner ◽  
Claude Herzog ◽  
Lucía Galiano ◽  
Arthur Gessler

2018 ◽  
Vol 260-261 ◽  
pp. 216-228 ◽  
Author(s):  
K. Ziemblińska ◽  
M. Urbaniak ◽  
L. Merbold ◽  
T.A. Black ◽  
A.M. Jagodziński ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document