Corrigendum to “Nonself-dual Chern–Simons and Maxwell–Chern–Simons vortices on bounded domains” [J. Funct. Anal. 221 (2005) 167–204]

2007 ◽  
Vol 242 (2) ◽  
pp. 674 ◽  
Author(s):  
Jongmin Han ◽  
Namkwon Kim
2003 ◽  
Vol 64 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Jongmin Han ◽  
Jaeduk Jang>
Keyword(s):  

1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-223-Pr10-225
Author(s):  
S. Scheidl ◽  
B. Rosenow

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Lara B. Anderson ◽  
James Gray ◽  
Andre Lukas ◽  
Juntao Wang

Abstract The superpotential in four-dimensional heterotic effective theories contains terms arising from holomorphic Chern-Simons invariants associated to the gauge and tangent bundles of the compactification geometry. These effects are crucial for a number of key features of the theory, including vacuum stability and moduli stabilization. Despite their importance, few tools exist in the literature to compute such effects in a given heterotic vacuum. In this work we present new techniques to explicitly determine holomorphic Chern-Simons invariants in heterotic string compactifications. The key technical ingredient in our computations are real bundle morphisms between the gauge and tangent bundles. We find that there are large classes of examples, beyond the standard embedding, where the Chern-Simons superpotential vanishes. We also provide explicit examples for non-flat bundles where it is non-vanishing and non-integer quantized, generalizing previous results for Wilson lines.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Eva Llabrés

Abstract We find the most general solution to Chern-Simons AdS3 gravity in Fefferman-Graham gauge. The connections are equivalent to geometries that have a non-trivial curved boundary, characterized by a 2-dimensional vielbein and a spin connection. We define a variational principle for Dirichlet boundary conditions and find the boundary stress tensor in the Chern-Simons formalism. Using this variational principle as the departure point, we show how to treat other choices of boundary conditions in this formalism, such as, including the mixed boundary conditions corresponding to a $$ T\overline{T} $$ T T ¯ -deformation.


Sign in / Sign up

Export Citation Format

Share Document