effective theories
Recently Published Documents


TOTAL DOCUMENTS

267
(FIVE YEARS 59)

H-INDEX

31
(FIVE YEARS 6)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Junegone Chay ◽  
Taewook Ha ◽  
Taehyun Kwon

Abstract We study N-jettiness in electroweak processes at extreme high energies, in which the mass of the weak gauge bosons can be regarded as small. The description of the scattering process such as e−e+ → μ−μ+ + X is similar to QCD. The incoming leptons emit initial-state radiation and the resultant particles, highly off-shell, participate in the hard scattering, which are expressed by the beam functions. After the hard scattering, the final- state leptons or leptonic jets are observed, described by the fragmenting jet functions or the jet functions respectively. At present, electroweak processes are prevailed by the processes induced by the strong interaction, but they will be relevant at future e−e+ colliders at high energy. The main difference between QCD and electroweak processes is that the initial- and final-state particles should appear in the form of hadrons, that is, color singlets in QCD, while there can be weak nonsinglets as well in electroweak interactions. We analyze the factorization theorems for the N-jettiness in e−e+ → μ−μ+ + X, and compute the factorized parts to next-to-leading logarithmic accuracy. To simplify the comparison with QCD, we only consider the SU(2)W gauge interaction, and the extension to the Standard Model is straightforward. Put it in a different way, it corresponds to an imaginary world in which colored particles can be observed in QCD, and the richer structure of effective theories is probed. Various nonzero nonsinglet matrix elements are interwoven to produce the factorized results, in contrast to QCD in which there are only contributions from the singlets. Another distinct feature is that the rapidity divergence is prevalent in the contributions from weak nonsinglets due to the different group theory factors between the real and virtual corrections. We verify that the rapidity divergence cancels in all the contributions with a different number of nonsinglet channels. We also consider the renormalization group evolution of each factorized part to resum large logarithms, which are distinct from QCD.


2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Panagiotis Betzios ◽  
Nava Gaddam ◽  
Olga Papadoulaki

Quantum gravity is expected to gauge all global symmetries of effective theories, in the ultraviolet. Inspired by this expectation, we explore the consequences of gauging CPT as a quantum boundary condition in phase space. We find that it provides for a natural semiclassical regularisation and discretisation of the continuous spectrum of a quantum Hamiltonian related to the Dilation operator. We observe that the said spectrum is in correspondence with the zeros of the Riemann zeta and Dirichlet beta functions. Following ideas of Berry and Keating, this may help the pursuit of the Riemann hypothesis. It strengthens the proposal that this quantum Hamiltonian captures the near horizon dynamics of the scattering matrix of the Schwarzschild black hole, given the rich chaotic spectrum upon discretisation. It also explains why the spectrum appears to be erratic despite the unitarity of the scattering matrix.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
J. Mourad ◽  
A. Sagnotti

Abstract We investigate in detail solutions of supergravity that involve warped products of flat geometries of the type Mp+1× R × TD−p−2 depending on a single coordinate. In the absence of fluxes, the solutions include flat space and Kasner-like vacua that break all supersymmetries. In the presence of a symmetric flux, there are three families of solutions that are characterized by a pair of boundaries and have a singularity at one of them, the origin. The first family comprises supersymmetric vacua, which capture a universal limiting behavior at the origin. The first and second families also contain non-supersymmetric solutions whose behavior at the other boundary, which can lie at a finite or infinite distance, is captured by the no-flux solutions. The solutions of the third family have a second boundary at a finite distance where they approach again the supersymmetric backgrounds. These vacua exhibit a variety of interesting scenarios, which include compactifications on finite intervals and p + 1-dimensional effective theories where the string coupling has an upper bound. We also build corresponding cosmologies, and in some of them the string coupling can be finite throughout the evolution.


Author(s):  
Subhaditya Bhattacharya ◽  
José Wudka

Standard Model (SM) of particle physics has achieved enormous success in describing the interactions among the known fundamental constituents of nature, yet it fails to describe phenomena for which there is very strong experimental evidence, such as the existence of dark matter, and which point to the existence of new physics not included in that model; beyond its existence, experimental data, however, have not provided clear indications as to the nature of that new physics. The effective field theory (EFT) approach, the subject of this review, is designed for this type of situations; it provides a consistent and unbiased framework within which to study new physics effects whose existence is expected but whose detailed nature is known very imperfectly. We will provide a description of this approach together with a discussion of some of its basic theoretical aspects. We then consider applications to high-energy phenomenology and conclude with a discussion of the application of EFT techniques to the study of dark matter physics and its possible interactions with the SM. In several of the applications we also briefly discuss specific models that are ultraviolet complete and may realize the effects described by the EFT.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Chiara Arina ◽  
Jan Hajer ◽  
Philipp Klose

Abstract We present a framework for the construction of portal effective theory (PETs) that couple effective field theories of the Standard Model (SM) to light hidden messenger fields. Using this framework we construct electroweak and strong scale PETs that couple the SM to messengers carrying spin zero, one half, or one. The electroweak scale PETs encompass all portal operators up to dimension five, while the strong scale PETs additionally contain all portal operators of dimension six and seven that contribute at leading order to quark-flavour violating transitions. Using the strong scale PETs, we define a set of portal currents that couple hidden sectors to QCD, and construct portal chiral perturbation theory (χPTs) that relate these currents to the light pseudoscalar mesons. We estimate the coefficients of the portal χPT Lagrangian that are not fixed by SM observations using non-perturbative matching techniques and give a complete list of the resulting one- and two-meson portal interactions. From those, we compute transition amplitudes for three golden channels that are used in hidden sector searches at fixed target experiments: i) charged kaon decay into a charged pion and a spin zero messenger, ii) charged kaon decay into a charged lepton and a spin one half messenger, and iii) neutral pion decay into a photon and a spin one messenger. Finally, we compare these amplitudes to specific expressions for models featuring light scalar particles, axion-like particles, heavy neutral leptons, and dark photons.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Sergio Cecotti

Abstract The purpose of this paper is two-fold. First we review in detail the geometric aspects of the swampland program for supersymmetric 4d effective theories using a new and unifying language we dub “domestic geometry”, the generalization of special Kähler geometry which does not require the underlying manifold to be Kähler or have a complex structure. All 4d SUGRAs are described by domestic geometry. As special Kähler geometries, domestic geometries carry formal brane amplitudes: when the domestic geometry describes the supersymmetric low-energy limit of a consistent quantum theory of gravity, its formal brane amplitudes have the right properties to be actual branes. The main datum of the domestic geometry of a 4d SUGRA is its gauge coupling, seen as a map from a manifold which satisfies the geometric Ooguri-Vafa conjectures to the Siegel variety; to understand the properties of the quantum-consistent gauge couplings we discuss several novel aspects of such “Ooguri-Vafa” manifolds, including their Liouville properties.Our second goal is to present some novel speculation on the extension of the swampland program to non-supersymmetric effective theories of gravity. The idea is that the domestic geometric description of the quantum-consistent effective theories extends, possibly with some qualifications, also to the non-supersymmetric case.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
G. Kaplanek ◽  
C.P. Burgess ◽  
R. Holman

Abstract Effective theories are being developed for fields outside black holes, often with an unusual open-system feel due to the influence of large number of degrees of freedom that lie out of reach beyond the horizon. What is often difficult when interpreting such theories is the absence of comparisons to simpler systems that share these features. We propose here such a simple model, involving a single external scalar field that mixes in a limited region of space with a ‘hotspot’ containing a large number of hot internal degrees of freedom. Since the model is at heart gaussian it can be solved explicitly, and we do so for the mode functions and correlation functions for the external field once the hotspot fields are traced out. We compare with calculations that work perturbatively in the mixing parameter, and by doing so can precisely identify its domain of validity. We also show how renormalization-group EFT methods can allow some perturbative contributions to be resummed beyond leading order, verifying the result using the exact expression.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1400
Author(s):  
Juan M. Torres-Rincon

Chiral symmetry represents a fundamental concept lying at the core of particle and nuclear physics. Its spontaneous breaking in vacuum can be exploited to distinguish chiral hadronic partners, whose masses differ. In fact, the features of this breaking serve as guiding principles for the construction of effective approaches of QCD at low energies, e.g., the chiral perturbation theory, the linear sigma model, the (Polyakov)–Nambu–Jona-Lasinio model, etc. At high temperatures/densities chiral symmetry can be restored bringing the chiral partners to be nearly degenerated in mass. At vanishing baryochemical potential, such restoration follows a smooth transition, and the chiral companions reach this degeneration above the transition temperature. In this work I review how different realizations of chiral partner degeneracy arise in different effective theories/models of QCD. I distinguish the cases where the chiral states are either fundamental degrees of freedom or (dynamically-generated) composed states. In particular, I discuss the intriguing case in which chiral symmetry restoration involves more than two chiral partners, recently addressed in the literature.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Arshia Momeni ◽  
Justinas Rumbutis ◽  
Andrew J. Tolley

Abstract We consider a broad class of massive four dimensional effective theories describing an infinite tower of charged massive spin 1 states, interacting with massless spin 1 and spin 0. The spectrum is chosen to be the same as that appears in the Kaluza-Klein theory reduction of 5d Yang-Mills to ensure the absence of any spurious poles in a possible double copy formulation. The effective theories are characterized by multiple different couplings between different fields which are unconstrained by symmetries and low energy criteria. Remarkably, by demanding that the scattering amplitudes preserve colour-kinematics duality for different scattering processes, required for the existence of a massive double copy, we find that our 4d Lagrangian is fixed uniquely to the Kaluza-Klein compactification of 5d Yang-Mills theory together with its known double copy consistent higher derivative operators.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 273
Author(s):  
Mariana Graña ◽  
Alvaro Herráez

The swampland is the set of seemingly consistent low-energy effective field theories that cannot be consistently coupled to quantum gravity. In this review we cover some of the conjectural properties that effective theories should possess in order not to fall in the swampland, and we give an overview of their main applications to particle physics. The latter include predictions on neutrino masses, bounds on the cosmological constant, the electroweak and QCD scales, the photon mass, the Higgs potential and some insights about supersymmetry.


Sign in / Sign up

Export Citation Format

Share Document