heterotic string
Recently Published Documents


TOTAL DOCUMENTS

625
(FIVE YEARS 35)

H-INDEX

55
(FIVE YEARS 2)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Keiya Ishiguro ◽  
Tatsuo Kobayashi ◽  
Hajime Otsuka

Abstract We examine a common origin of four-dimensional flavor, CP, and U(1)R symmetries in the context of heterotic string theory with standard embedding. We find that flavor and U(1)R symmetries are unified into the Sp(2h + 2, ℂ) modular symmetries of Calabi-Yau threefolds with h being the number of moduli fields. Together with the $$ {\mathbb{Z}}_2^{\mathrm{CP}} $$ ℤ 2 CP CP symmetry, they are enhanced to GSp(2h + 2, ℂ) ≃ Sp(2h + 2, ℂ) ⋊ $$ {\mathbb{Z}}_2^{\mathrm{CP}} $$ ℤ 2 CP generalized symplectic modular symmetry. We exemplify the S3, S4, T′, S9 non-Abelian flavor symmetries on explicit toroidal orbifolds with and without resolutions and ℤ2, S4 flavor symmetries on three-parameter examples of Calabi-Yau threefolds. Thus, non-trivial flavor symmetries appear in not only the exact orbifold limit but also a certain class of Calabi-Yau three-folds. These flavor symmetries are further enlarged to non-Abelian discrete groups by the CP symmetry.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Daniel Kläwer

Abstract We test the refined distance conjecture in the vector multiplet moduli space of 4D $$ \mathcal{N} $$ N = 2 compactifications of the type IIA string that admit a dual heterotic description. In the weakly coupled regime of the heterotic string, the moduli space geometry is governed by the perturbative heterotic dualities, which allows for exact computations. This is reflected in the type IIA frame through the existence of a K3 fibration. We identify the degree d = 2N of the K3 fiber as a parameter that could potentially lead to large distances, which is substantiated by studying several explicit models. The moduli space geometry degenerates into the modular curve for the congruence subgroup Γ0(N)+. In order to probe the large N regime, we initiate the study of Calabi-Yau threefolds fibered by general degree d > 8 K3 surfaces by suggesting a construction as complete intersections in Grassmann bundles.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Stanislav Hronek ◽  
Linus Wulff

Abstract It has been shown by Marques and Nunez that the first α′-correction to the bosonic and heterotic string can be captured in the O(D, D) covariant formalism of Double Field Theory via a certain two-parameter deformation of the double Lorentz transformations. This deformation in turn leads to an infinite tower of α′-corrections and it has been suggested that they can be captured by a generalization of the Bergshoeff-de Roo identification between Lorentz and gauge degrees of freedom in an extended DFT formalism. Here we provide strong evidence that this indeed gives the correct α′2-corrections to the bosonic and heterotic string by showing that it leads to a cubic Riemann term for the former but not for the latter, in agreement with the known structure of these corrections including the coefficient of Riemann cubed.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Bobby Samir Acharya ◽  
Alex Kinsella ◽  
David R. Morrison

Abstract By fibering the duality between the E8 × E8 heterotic string on T3 and M-theory on K3, we study heterotic duals of M-theory compactified on G2 orbifolds of the form T7/$$ {\mathbb{Z}}_2^3 $$ ℤ 2 3 . While the heterotic compactification space is straightforward, the description of the gauge bundle is subtle, involving the physics of point-like instantons on orbifold singularities. By comparing the gauge groups of the dual theories, we deduce behavior of a “half-G2” limit, which is the M-theory analog of the stable degeneration limit of F-theory. The heterotic backgrounds exhibit point-like instantons that are localized on pairs of orbifold loci, similar to the “gauge-locking” phenomenon seen in Hořava-Witten compactifications. In this way, the geometry of the G2 orbifold is translated to bundle data in the heterotic background. While the instanton configuration looks surprising from the perspective of the E8 × E8 heterotic string, it may be understood as T-dual Spin(32)/ℤ2 instantons along with winding shifts originating in a dual Type I compactification.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Bernardo Fraiman ◽  
Héctor Parra De Freitas

Abstract We use a moduli space exploration algorithm to produce a complete list of maximally enhanced gauge groups that are realized in the heterotic string in 7d, encompassing the usual Narain component, and five other components with rank reduction realized via nontrivial holonomy triples. Using lattice embedding techniques we find an explicit match with the mechanism of singularity freezing in M-theory on K3. The complete global data for each gauge group is explicitly given.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Ivano Basile

Abstract We investigate interactions between branes of various dimensions, both charged and uncharged, in three non-supersymmetric string models. These include the USp(32) and U(32) orientifold projections of the type IIB and type 0B strings, as well as the SO(16)×SO(16) projection of the exceptional heterotic string. The resulting ten-dimensional spectra are free of tachyons, and the combinations of branes that they contain give rise to rich and varied dynamics. We compute static potentials for parallel stacks of branes in three complementary regimes: the probe regime, in which one of the two stacks is parametrically heavier than the other, the string-amplitude regime, in which both stacks are light, and the holographic regime. Whenever comparisons are possible, we find qualitative agreement despite the absence of supersymmetry. For charged branes, our analysis reveals that the Weak Gravity Conjecture is satisfied in a novel way via a renormalization of the effective charge-to-tension ratio.


Author(s):  
Alon E. Faraggi ◽  
Viktor G. Matyas ◽  
Benjamin Percival

The [Formula: see text] heterotic string orbifold yielded a large space of phenomenological three generation models and serves as a testing ground to explore how the Standard Model of particle physics may be incorporated in a theory of quantum gravity. In this paper, we explore the existence of type 0 models in this class of string compactifications. We demonstrate the existence of type 0 [Formula: see text] heterotic string orbifolds, and show that there exist a large degree of redundancy in the space of GGSO projection coefficients when the type 0 restrictions are implemented. We explore the existence of such configurations in several constructions. The first correspond to essentially a unique configuration out of a priori [Formula: see text] discrete GGSO choices. We demonstrate this uniqueness analytically, as well as by the corresponding analysis of the partition function. A wider classification is performed in [Formula: see text]-models and [Formula: see text]-models, where the first class correspond to compactifications of a tachyonic ten-dimensional heterotic string vacuum, whereas the second correspond to compactifications of the ten-dimensional nontachyonic [Formula: see text]. We show that the type 0 models in both cases contain physical tachyons at the free fermionic point in the moduli space. These vacua are therefore necessarily unstable, but may be instrumental in exploring the string dynamics in cosmological scenarios. We analyze the properties of the string one-loop amplitude. Naturally, these are divergent due to the existence of tachyonic states. We show that once the tachyonic states are removed by hand the amplitudes are finite and exhibit a form of misaligned supersymmetry.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Alon E. Faraggi ◽  
Viktor G. Matyas ◽  
Benjamin Percival

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Keiya Ishiguro ◽  
Tatsuo Kobayashi ◽  
Hajime Otsuka

Abstract We study the impacts of matter field Kähler metric on physical Yukawa couplings in string compactifications. Since the Kähler metric is non-trivial in general, the kinetic mixing of matter fields opens a new avenue for realizing a hierarchical structure of physical Yukawa couplings, even when holomorphic Yukawa couplings have the trivial structure. The hierarchical Yukawa couplings are demonstrated by couplings of pure untwisted modes on toroidal orbifolds and their resolutions in the context of heterotic string theory with standard embedding. Also, we study the hierarchical couplings among untwisted and twisted modes on resolved orbifolds.


Sign in / Sign up

Export Citation Format

Share Document