scholarly journals Absence of self-similar blow-up and local well-posedness for the constant mean-curvature wave equation

2015 ◽  
Vol 269 (4) ◽  
pp. 1180-1202
Author(s):  
Sagun Chanillo ◽  
Po-Lam Yung
2021 ◽  
Vol 30 (1) ◽  
pp. 29-40
Author(s):  
KADRI ARSLAN ◽  
ALIM SUTVEREN ◽  
BETUL BULCA

Self-similar flows arise as special solution of the mean curvature flow that preserves the shape of the evolving submanifold. In addition, \lambda -hypersurfaces are the generalization of self-similar hypersurfaces. In the present article we consider \lambda -hypersurfaces in Euclidean spaces which are the generalization of self-shrinkers. We obtained some results related with rotational hypersurfaces in Euclidean 4-space \mathbb{R}^{4} to become self-shrinkers. Furthermore, we classify the general rotational \lambda -hypersurfaces with constant mean curvature. As an application, we give some examples of self-shrinkers and rotational \lambda -hypersurfaces in \mathbb{R}^{4}.


2014 ◽  
Vol 11 (03) ◽  
pp. 563-601 ◽  
Author(s):  
Qian Wang

This is the second (and last) part of a series in which we consider very rough solutions to Cauchy problem for the Einstein vacuum equations in constant mean curvature and spatial harmonic (CMCSH) gauge, and we obtain a local well-posedness result in Hs with s > 2. The novelty of our approach lies in that, without resorting to the standard paradifferential regularization over the rough Einstein metric g, we manage to implement the commuting vector field approach and prove a Strichartz estimate for the geometric wave equation □g ϕ = 0 in a direct manner. This direct treatment would not work without gaining sufficient regularity on the background geometry. In this paper, we analyze the geometry of null hypersurfaces in rough Einstein spacetimes in terms of Hs data. We provide an integral control on the spatial supremum of the connection coefficients [Formula: see text], ζ, which is crucially tied to the Strichartz estimates established in the first part.


2002 ◽  
Vol 04 (02) ◽  
pp. 211-222 ◽  
Author(s):  
FABRICE PLANCHON

We prove that the initial value problem for the conformally invariant semi-linear wave equation is well-posed in the Besov space [Formula: see text]. This induces the existence of (non-radially symmetric) self-similar solutions for homogeneous data in such Besov spaces.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Ying Wang ◽  
Yunxi Guo ◽  
Fang Li

The local well-posedness for a generalized periodic nonlinearly dispersive wave equation is established. Under suitable assumptions on initial valueu0, a precise blow-up scenario and several sufficient conditions about blow-up results to the equation are presented.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Enzo Vitillaro

<p style='text-indent:20px;'>The aim of this paper is to give global nonexistence and blow–up results for the problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{cases} u_{tt}-\Delta u+P(x,u_t) = f(x,u) \qquad &amp;\text{in $(0,\infty)\times\Omega$,}\\ u = 0 &amp;\text{on $(0,\infty)\times \Gamma_0$,}\\ u_{tt}+\partial_\nu u-\Delta_\Gamma u+Q(x,u_t) = g(x,u)\qquad &amp;\text{on $(0,\infty)\times \Gamma_1$,}\\ u(0,x) = u_0(x),\quad u_t(0,x) = u_1(x) &amp; \text{in $\overline{\Omega}$,} \end{cases} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a bounded open <inline-formula><tex-math id="M2">\begin{document}$ C^1 $\end{document}</tex-math></inline-formula> subset of <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb R}^N $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ N\ge 2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ \Gamma = \partial\Omega $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ (\Gamma_0,\Gamma_1) $\end{document}</tex-math></inline-formula> is a partition of <inline-formula><tex-math id="M7">\begin{document}$ \Gamma $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ \Gamma_1\not = \emptyset $\end{document}</tex-math></inline-formula> being relatively open in <inline-formula><tex-math id="M9">\begin{document}$ \Gamma $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M10">\begin{document}$ \Delta_\Gamma $\end{document}</tex-math></inline-formula> denotes the Laplace–Beltrami operator on <inline-formula><tex-math id="M11">\begin{document}$ \Gamma $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M12">\begin{document}$ \nu $\end{document}</tex-math></inline-formula> is the outward normal to <inline-formula><tex-math id="M13">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula>, and the terms <inline-formula><tex-math id="M14">\begin{document}$ P $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M15">\begin{document}$ Q $\end{document}</tex-math></inline-formula> represent nonlinear damping terms, while <inline-formula><tex-math id="M16">\begin{document}$ f $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M17">\begin{document}$ g $\end{document}</tex-math></inline-formula> are nonlinear source terms. These results complement the analysis of the problem given by the author in two recent papers, dealing with local and global existence, uniqueness and well–posedness.</p>


Sign in / Sign up

Export Citation Format

Share Document