Influence of heat transfer on the aerodynamic performance of a plunging and pitching NACA0012 airfoil at low Reynolds numbers

2013 ◽  
Vol 37 ◽  
pp. 88-99 ◽  
Author(s):  
Denis F. Hinz ◽  
Hekmat Alighanbari ◽  
Christian Breitsamter
2000 ◽  
Author(s):  
Ajit Pal Singh ◽  
S. H. Winoto ◽  
D. A. Shah ◽  
K. G. Lim ◽  
Robert E. K. Goh

Abstract Performance characteristics of some low Reynolds number airfoils for the use in micro air vehicles (MAVs) are computationally studied using XFOIL at a Reynolds number of 80,000. XFOIL, which is based on linear-vorticity stream function panel method coupled with a viscous integral formulation, is used for the analysis. In the first part of the study, results obtained from the XFOIL have been compared with available experimental data at low Reynolds numbers. XFOIL is then used to study relative aerodynamic performance of nine different airfoils. The computational analysis has shown that the S1223 airfoil has a relatively better performance than other airfoils considered for the analysis.


1978 ◽  
Vol 14 (10) ◽  
pp. 905-907
Author(s):  
A. S. Lyshevskii ◽  
V. G. Sokolov ◽  
V. M. Sychev ◽  
L. Ya. Shkret

2020 ◽  
Vol 34 (19) ◽  
pp. 2050182
Author(s):  
J. P. Mammadova ◽  
A. P. Abdullaev ◽  
R. M. Rzayev ◽  
R. F. Kelbaliev ◽  
S. H. Mammadova ◽  
...  

The flow regimes of liquids encountered in engineering practice are mainly turbulent due to their structure, with which the features of such flows at supercritical pressure are considered in the work and some results are compared with similar ones obtained at low Reynolds numbers. Under these conditions, the physical properties of the fluid change sharply in the parietal layer and, depending on the values of the heat flux density and temperature, the area of sharp changes in physical properties can move along the flow cross section. Depending on the influence of these factors, the nature of the fluid flow can change, which affects the patterns of heat transfer and, accordingly, the nature of the distribution of wall temperature. In particular, conditions were identified for the appearance of a primary and secondary improved heat transfer regime. The possibility of the existence of an anomalous behavior of heat transfer during a turbulent flow of aromatic hydrocarbons was revealed, the nature of the distribution of the wall temperature along the length of the experimental tube is examined, and the influence of changes in the thermophysical properties of the substance on it is analyzed. The experimental data for water and toluene with a deteriorated heat transfer mode deviate from the calculated by [Formula: see text]25%. As is known, the flow regime of fluids in engineering practice is mainly turbulent in structure. Therefore, it is very important to study the characteristics of such flows at supercritical pressure and compare some results with similar results obtained at low Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document