An investigation of free surface effects on drag and lift coefficients of an autonomous underwater vehicle (AUV) using computational and experimental fluid dynamics methods

2014 ◽  
Vol 51 ◽  
pp. 161-171 ◽  
Author(s):  
Sh. Mansoorzadeh ◽  
E. Javanmard
Author(s):  
E Javanmard ◽  
Sh Mansoorzadeh ◽  
A Pishevar ◽  
J A Mehr

Determination of hydrodynamic coefficients is a vital part of predicting the dynamic behavior of an Autonomous Underwater Vehicle (AUV). The aim of the present study was to determine the drag and lift related hydrodynamic coefficients of a research AUV, using Computational and Experimental Fluid Dynamics methods. Experimental tests were carried out at AUV speed of 1.5 m s-1 for two general cases: I. AUV without control surfaces (Hull) at various angles of attack in order to calculate Hull related hydrodynamic coefficients and II. AUV with control surfaces at zero angle of attack but in different stern angles to calculate hydrodynamic coefficients related to control surfaces. All the experiments carried out in a towing tank were also simulated by a commercial computational fluid dynamics (CFD) code. The hydrodynamic coefficients obtained from the numerical simulations were in close agreement with those obtained from the experiments.


2020 ◽  
Vol 162 (A2) ◽  
Author(s):  
E Javanmard ◽  
Sh Mansoorzadeh ◽  
A Pishevar ◽  
J A Mehr

Determination of hydrodynamic coefficients is a vital part of predicting the dynamic behavior of an Autonomous Underwater Vehicle (AUV). The aim of the present study was to determine the drag and lift related hydrodynamic coefficients of a research AUV, using Computational and Experimental Fluid Dynamics methods. Experimental tests were carried out at AUV speed of 1.5 m s-1 for two general cases: I. AUV without control surfaces (Hull) at various angles of attack in order to calculate Hull related hydrodynamic coefficients and II. AUV with control surfaces at zero angle of attack but in different stern angles to calculate hydrodynamic coefficients related to control surfaces. All the experiments carried out in a towing tank were also simulated by a commercial computational fluid dynamics (CFD) code. The hydrodynamic coefficients obtained from the numerical simulations were in close agreement with those obtained from the experiments.


2020 ◽  
Vol 14 (4) ◽  
pp. 044116
Author(s):  
F. Akbaridoust ◽  
C. M. de Silva ◽  
C. Szydzik ◽  
A. Mitchell ◽  
I. Marusic ◽  
...  

2011 ◽  
Vol 29 (2) ◽  
pp. 179-196 ◽  
Author(s):  
G. J. Castilho ◽  
M. A. Cremasco ◽  
L. de Martín ◽  
J. M. Aragón

2006 ◽  
Vol 30 (11) ◽  
pp. 1459-1471 ◽  
Author(s):  
N.G. Deen ◽  
M. Van Sint Annaland ◽  
J.A.M. Kuipers

Author(s):  
T J Barber ◽  
G Doig ◽  
C Beves ◽  
I Watson ◽  
S Diasinos

This article highlights the ‘synergistic’ use of experimental fluid dynamics (EFD) and computational fluid dynamics (CFD), where the two sets of simulations are performed concurrently and by the same researcher. In particular, examples from the area of ground effect aerodynamics are discussed, where the major facility used was also designed through a combination of CFD and EFD. Three examples are than outlined, to demonstrate the insight that can be obtained from the integration of CFD and EFD studies. The case studies are the study of dimple flow (to enhance aerodynamic performance), the analysis of a Formula-style front wing and wheel, and the study of compressible flow ground effect aerodynamics. In many instances, CFD has been used to not only provide complementary information to an experimental study, but to design the experiments. Laser-based, non-intrusive experimental techniques were used to provide an excellent complement to CFD. The large datasets found from both experimental and numerical simulations have required a new methodology to correlate the information; a new post-processing method has been developed, making use of the kriging and co-kriging estimators, to develop correlations between the often disparate data types.


Sign in / Sign up

Export Citation Format

Share Document