drag and lift coefficients
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 21)

H-INDEX

6
(FIVE YEARS 1)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 529
Author(s):  
Rashid Mahmood ◽  
Afraz Hussain Majeed ◽  
Qurrat ul Ain ◽  
Jan Awrejcewicz ◽  
Imran Siddique ◽  
...  

In the current work, an investigation has been carried out for the Bingham fluid flow in a channel-driven cavity with a square obstacle installed near the inlet. A square cavity is placed in a channel to accomplish the desired results. The flow has been induced using a fully developed parabolic velocity at the inlet and Neumann condition at the outlet, with zero no-slip conditions given to the other boundaries. Three computational grids, C1, C2, and C3, are created by altering the position of an obstacle of square shape in the channel. Fundamental conservation and rheological law for viscoplastic Bingham fluids are enforced in mathematical modeling. Due to the complexity of the representative equations, an effective computing strategy based on the finite element approach is used. At an extra-fine level, a hybrid computational grid is created; a very refined level is used to obtain results with higher accuracy. The solution has been approximated using P2 − P1 elements based on the shape functions of the second and first-order polynomial polynomials. The parametric variables are ornamented against graphical trends. In addition, velocity, pressure plots, and line graphs have been provided for a better physical understanding of the situation Furthermore, the hydrodynamic benchmark quantities such as pressure drop, drag, and lift coefficients are assessed in a tabular manner around the external surface of the obstacle. The research predicts the effects of Bingham number (Bn) on the drag and lift coefficients on all three grids C1, C2, and C3, showing that the drag has lower values on the obstacle in the C2 grid compared with C1 and C3 for all values of Bn. Plug zone dominates in the channel downstream of the obstacle with augmentation in Bn, limiting the shear zone in the vicinity of the obstacle.


Author(s):  
Ibrahim Amer Ibrahim ◽  
Mohammed Saeed Mohammed ◽  
A. Ibrahim ◽  
O. J. Abdalgbar

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hamid Rahman ◽  
Shams-ul-Islam ◽  
Waqas Sarwar Abbasi ◽  
Raheela Manzoor ◽  
Fazle Amin ◽  
...  

In this work, numerical simulations are performed in order to study the effects of aspect ratio (AR) and Reynolds number (Re) on flow characteristics of three side-by-side rectangular cylinders for fixed spacing ratio ( g ), using the lattice Boltzmann method (LBM). The Reynolds number varies within the range 60 ≤ Re ≤ 180, aspect ratio is between 0.25 and 4, and spacing ratio is fixed at g  = 1.5. The flow structure mechanism behind the cylinders is analyzed in terms of vorticity contour visualization, time-trace analysis of drag and lift coefficients, power spectrum analysis of lift coefficient and variations of mean drag coefficient, and Strouhal number. For different combinations of AR and Re, the flow is characterized into regular, irregular, and symmetric vortex shedding. In regular and symmetric vortex shedding the drag and lift coefficients vary smoothly while reverse trend occurs in irregular vortex shedding. At small AR, each cylinder experiences higher magnitude drag force as compared to intermediate and large aspect ratios. The vortex shedding frequency was found to be smaller at smaller AR and increased with increment in AR.


Aerospace ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 287
Author(s):  
Hirotaka Otsu

For most re-entry capsules, the shape of the forebody of the capsule is designed based on the blunted nose cone. A similar shape can be created using a hyperboloid of revolution that can control the nose bluntness and the half angle of the cone easily. In this study, the hypersonic aerodynamic characteristics of re-entry capsules designed with hyperbolic contours were investigated using the CFD code, FaSTAR, developed by Japan Aerospace Exploration Agency (JAXA). The CFD results showed that, using the hyperbolic contours, the drag and lift coefficients can be increased compared to those for the Hayabusa re-entry capsule without changing the shape of the capsule drastically. This suggests that shape design based on the hyperbolic contours can improve the aerodynamic characteristics of re-entry capsules.


Author(s):  
Atta Ullah ◽  
Muhammad Badar Zaman ◽  
Muhammad Aashan Bhatti ◽  
Danyal Qasim ◽  
Adnan Hamid ◽  
...  

Author(s):  
Armando Alexandre ◽  
Raffaello Antonutti ◽  
Theo Gentils ◽  
Laurent Mutricy ◽  
Pierre Weyne

Abstract Floating wind is now entering a commercial-stage, and there are a significant number of commercial projects in countries like France, Japan, UK and Portugal. A floating wind project is complex and has many interdependencies and interfaces. During all stages of the project several participants are expected to use a numerical model of the whole system and not only the part the participant has to design. Examples of this are the mooring and floater designer requiring a coupled model of the whole system including also the wind turbine, the operations team requiring a model of the system to plan towing and operations. All these stakeholders require a coupled model where the hydrodynamics, aerodynamics and structural physics of the system are captured with different levels of accuracy. In this paper, we will concentrate on a simplified model for the aerodynamic loading of the turbine in idling and standstill conditions that can be easily implemented in a simulation tool used for floater, mooring and marine operations studies. The method consists of using a subset of simulations at constant wind speed (ideally close to the wind speed required for the simulations) run on a detailed turbine model on a rigid tower and fixed foundation — normally run by the turbine designer. A proxy to the aerodynamic loads on the rotor and nacelle (RNA) is to take the horizontal yaw bearing loads. The process is then repeated for a range of nacelle yaw misalignments (for example every 15° for 360°). A look-up table with the horizontal yaw bearing load for the range of wind-rotor misalignments investigated is created. The simplified model of the aerodynamic loads on the RNA consists of a fixed blade (or wing) segment located at the hub, where aerodynamic drag and lift coefficients can be specified. Using the look-up tables created using the detailed turbine model, drag and lift coefficients are estimated as a function of the angle between the rotor and the wind direction. This representation of the aerodynamic loading on the RNA was then verified against full-field turbulent wind simulations in fixed and floating conditions using a multi-megawatt commercial turbine. The results for the parameters concerning the floater, mooring and marine operations design were monitored (e.g. tower bottom loads, offsets, pitch, mooring tensions) for extreme conditions and the errors introduced by this simplified rotor are generally lower than 4%. This illustrates that this simplified representation of the turbine can be used by the various parties of the project during the early stages of the design, particularly when knowing the loading within the RNA and on higher sections of the tower is not important.


2021 ◽  
Vol 38 (1) ◽  
pp. 66-84
Author(s):  
Nelson Fundora Sautié ◽  
Leonardo Romero Monteiro ◽  
Edith Beatriz Camano Schettini ◽  
Vivian Elena Parnás

2021 ◽  
Vol 12 (1) ◽  
pp. 159-183
Author(s):  
Arun M. P. ◽  
Satheesh M. ◽  
J. Edwin Raja Dhas

The designing and modeling of delta wing is one of the interesting topics. A number of researchers has contributed different works on modeling the same. This paper comes out with a new delta wing modeling with the inclusion of optimization concept. The obtained data from the investigation is integrated and given as the input to the classifier for predicting the drag and lift coefficients. This paper uses neural network (NN) classifier for predicting the drag and lift coefficients. Moreover, the weight of the NN is optimized using a proposed genetic algorithm. After the implementation, the performance of proposed model is compared to other conventional methods like individual adaptive genetic algorithm (IAGA-NN), deterministic adaptive genetic algorithm (DAGA-NN), self-adaptive genetic algorithm (SAGA-NN), genetic algorithm (GA-NN), gradient descendent (GD-NN), and Levenberg masquerade (LM-NN), respectively, in terms of drag and lift coefficient.


Author(s):  
Hamid Rahman ◽  
Waqas Sarwar Abbasi ◽  
Shams-ul-Islam ◽  
Raees Khan ◽  
Muhammad Uzair Khan

This study focuses on the characteristics of flow past three side-by-side rectangular cylinders under the effect of aspect ratios (AR) and Reynolds numbers (Re) at two different gap ratios ([Formula: see text]) using the lattice Boltzmann method. For this purpose, AR is varied in the range of 0.25–4, the Re values are 100, 140 and 180 and the two different values of [Formula: see text] taken into account are [Formula: see text] and 3. The results are presented in the form of vorticity contours, temporal histories of drag and lift coefficients and power spectrum of lift coefficients. Also, the variation of physical parameters like mean drag coefficient, Strouhal number and the root-mean-square values of drag and lift coefficients with Re and AR is presented for [Formula: see text] and 3. The current numerical computations yield that for both gap ratios and all Re, there exist four different flow regimes depending on AR: (a) steady flow, (b) modulated flow, (c) symmetric flow and (d) periodic flow. At narrow gap ratios, the jet flow emerging within the gaps of cylinders altered the flow structures and fluid forces abruptly. The aspect ratio is found to have more influence on the flow characteristics of cylinders as compared to the Reynolds numbers at large gap ratios.


Sign in / Sign up

Export Citation Format

Share Document