human aorta
Recently Published Documents


TOTAL DOCUMENTS

664
(FIVE YEARS 52)

H-INDEX

64
(FIVE YEARS 3)

Author(s):  
Qianqian Lu ◽  
Ying Li ◽  
Jiaping Lou ◽  
Pingzhen Li ◽  
Yi Gu ◽  
...  

Circular RNAs (circRNAs) are associated with the pathogenesis of human diseases, including atherosclerosis. Here, we undertook to investigate the biological role and mechanism of circRNA E3 ubiquitin-protein ligase (circ-CHFR) in atherosclerosis. The expression levels of circ-CHFR, miR-214-3p, and pregnancy-associated plasma protein A (PAPPA) were measured by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot in human aorta vascular smooth muscle cells (HA-VSMCs) exposed to oxidized low-density lipoprotein (ox-LDL). Cell proliferation, migration, and invasion capabilities were assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide (MTT), and transwell assays, respectively. The relationship between miR-214-3p and circ-CHFR or PAPPA was confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Our data showed that circ-CHFR was upregulated in HA-VSMCs after stimulation with ox-LDL. Downregulation of circ-CHFR inhibited the proliferation, migration, and invasion of HA-VSMCs exposed to ox-LDL. Mechanistically, circ-CHFR acted as a miR-214-3p sponge, and miR-214-3p was a molecular mediator of circ-CHFR regulation in ox-LDL-stimulated HA-VSMCs. PAPPA was a miR-214-3p target, and circ-CHFR regulated the expression of PAPPA by sponging miR-214-3p. Moreover, overexpression of miR-214-3p repressed the proliferation, migration, and invasion of ox-LDL-induced HA-VSMCs by decreasing PAPPA expression. Our findings suggest that the circ-CHFR/miR-214-3p/PAPPA axis regulates ox-LDL-induced proliferation, migration, and invasion in HA-VSMCs.


2021 ◽  
Author(s):  
James P. Pirruccello ◽  
Seung Hoan Choi ◽  
Mark D. Chaffin ◽  
Mahan Nekoui ◽  
Elizabeth L. Chou ◽  
...  

As the largest conduit vessel, the aorta is responsible for the conversion of phasic systolic inflow from ventricular ejection into more continuous blood delivery to peripheral arteries. Distension during systole and recoil during diastole conserves ventricular energy and is enabled by the specialized composition of the aortic extracellular matrix. Aortic distensibility decreases with age and prematurely in vascular disease. To discover genetic determinants of aortic distensibility we trained a deep learning model to quantify aortic size throughout the cardiac cycle and calculate aortic distensibility and aortic strain in 42,342 participants in the UK Biobank with available cardiac magnetic resonance imaging. In up to 40,028 participants with genetic data, common variant analysis identified 12 and 26 loci for ascending and 11 and 21 loci for descending aortic distensibility and strain, respectively. Of the newly identified loci, 22 were specific to strain or distensibility and were not identified in a thoracic aortic diameter GWAS within the same samples. Loci associated with both aortic diameter and aortic strain or distensibility demonstrated a consistent, inverse directionality. Transcriptome-wide analyses, rare-variant burden tests, and analyses of gene expression in single nucleus RNA sequencing of human aorta were performed to prioritize genes at individual loci. Loci highlighted multiple genes involved in elastogenesis, matrix degradation, and extracellular polysaccharide generation. Characterization of the genetic determinants of aortic function may provide novel targets for medical intervention in aortic disease.


2021 ◽  
Vol 74 (4) ◽  
pp. e325-e326
Author(s):  
Kimberly T. Malka ◽  
Penny Clum ◽  
Benjamin Tero ◽  
Cathleen Huang ◽  
Calvin Vary ◽  
...  

Author(s):  
J. Concannon ◽  
KM Moerman ◽  
N. Hynes ◽  
S. Sultan ◽  
JP McGarry

AbstractThe effect of repair techniques on the biomechanics of the aorta is poorly understood, resulting in significant levels of postoperative complications for patients worldwide. This study presents a computational analysis of the influence of Nitinol-based devices on the biomechanical performance of a healthy patient-specific human aorta. Simulations reveal that Nitinol stent-grafts stretch the artery wall so that collagen is stretched to a straightened high-stiffness configuration. The high-compliance regime (HCR) associated with low diastolic lumen pressure is eliminated, and the artery operates in a low-compliance regime (LCR) throughout the entire cardiac cycle. The slope of the lumen pressure–area curve for the LCR post-implantation is almost identical to that of the native vessel during systole. This negligible change from the native LCR slope occurs because the stent-graft increases its diameter from the crimped configuration during deployment so that it reaches a low-stiffness unloading plateau. The effective radial stiffness of the implant along this unloading plateau is negligible compared to the stiffness of the artery wall. Provided the Nitinol device unloads sufficiently during deployment to the unloading plateau, the degree of oversizing has a negligible effect on the pressure–area response of the vessel, as each device exerts approximately the same radial force, the slope of which is negligible compared to the LCR slope of the native artery. We show that 10% oversizing based on the observed diastolic diameter in the mid descending thoracic aorta results in a complete loss of contact between the device and the wall during systole, which could lead to an endoleak and stent migration. 20% oversizing reaches the Dacron enforced area limit (DEAL) during the pulse pressure and results in an effective zero-compliance in the later portion of systole.


2021 ◽  
pp. 1-8
Author(s):  
Inna-Margaryta Radomychelski ◽  
Artem Piddubnyi ◽  
Sergey Danilchenko ◽  
Olena Maksymova ◽  
Yuliia Moskalenko ◽  
...  

Ectopic calcification or pathological biomineralization correlates with morbidity and mortality from cardiovascular diseases. Aortas with atherosclerotic lesions and biomineralization were selected for the study. Thirty samples of mineralized abdominal aortas (group M) were examined by histology. Depending on the calcifications size, samples were separated into group M1 (macroscopic calcifications) and M2 (microscopic calcifications). Each group consists of 15 samples. Calcification 2 mm or less were considered as microscopic, >2 mm—macroscopic. Thirty samples of aortic tissue without biomineralization (group C) were used as a control group. Aortic tissue was examined by macroscopic description, histology, histochemistry, immunohistochemistry (IHC), scanning electron microscopy (SEM) with microanalysis, and transmission electron microscopy (TEM). The results of IHC showed the involvement of OPN in the formation and development of pathological biomineralization, but the obvious role of OPN in the differentiation of macro- and microcalcifications of atherosclerotic aorta was not revealed. SEM with X-ray microanalysis confirmed that the biomineral part of the aortic samples of the M1 group consisted mainly of apatites, which correspond to previous studies. The Ca/P ratio was less in the M2 group than in the M1 group. It means that microcalcifications can be formed by more defective (immature) hydroxyapatite.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
LU LIU ◽  
Adrien Georges ◽  
Nabila Bouatia-Naji

Introduction: Smooth muscle cells (SMCs) capacity to phenotype switching between proliferative and quiescent (contractile) is a widely studied mechanism in cardiovascular disease. Primary SMCs tend to lose many physiological features in culture, which makes the study of their contractile function challenging. Recently, an optimized protocol of induced pluripotent stem cells (iPSCs) differentiation into contractile SMCs was described. Here we aimed at defining the transcriptomic and open chromatin dynamics during the acquisition of SMCs phenotypes. Methods: We differentiated 4 human iPSC lines (2 males, 2 females) towards either contractile (Repsox induced) or synthetic (PDGF-BB/TGF-β induced) SMC phenotypes using a 24-days protocol. We performed RNA-Seq and assay for transposase accessible chromatin (ATAC)-Seq at 5 time points of differentiation. We analyzed gene expression profiles and compared them to existing dataset of human aorta by principle component analyses (PCA) and gene set enrichment analyses using GO terms. Results: iPSCs derived SMCs showed expected morphology and positive expression of SMC markers. Synthetic SMCs (SSMCs) exhibited greater capacity of proliferation, migration and lower calcium release capacity, compared to contractile SMCs (CSMCs). RNA-Seq results showed that multiple genes involved in the contractile function of arteries, including myosin light chain kinase (MYLK) and angiotensin type 1 receptor ( AGTR1 ) genes were highly expressed in CSMCs compared to SSMCs. Overall, CSMCs conserved SMC properties beyond 24 days and their gene expression profile clustered near human aorta. During late differentiation stages, CSMCs showed an upregulation of genes involved in cardiovascular system development, whereas genes involved in cell stress were upregulated in SSMCs. Conclusions: We describe global genomic profiles of iPSCs derived CSMCs that presented comparable gene expression profiles to mature artery tissue. Combination with upcoming DNA accessibility maps is expected to allow the functional exploration of genetic risk variation involved in several arterial diseases involving the impairment of the SMCs contractile function.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Adeleh Poursaleh ◽  
Farnaz Sadegh Beigee ◽  
Golnaz Esfandiari ◽  
Mohammad Najafi

Abstract Background Knowledge of stenosis in coronary arteries requires an understanding of the cellular and molecular processes that occur throughout the leukocyte rolling process. In this study, the roles of miR-125a-5p and miR-495-3p were investigated on the adhesion of endothelial cells (ECs) isolated from the human aorta. Methods Human primary endothelial cells were obtained from the aorta of people who had died of brain death. Whole blood was used to isolate the monocytes. The miR-125 and miR-495 were predicted and transfected into ECs using Poly Ethylene Imine (PEI). The expression levels of adhesion molecules and monocyte recruitment were identified by the RT-qPCR technique and Leukocyte-Endothelial Adhesion Assay kit, respectively. Results The ICAM-1, ICAM-2 and VCAM-1 expression levels decreased significantly in the miR-495/PEI-transfected ECs (P < 0.05) while in the miR-125/PEI-transfected ECs only the ICAM-2 and ITGB-2 expression levels decreased significantly (P < 0.05) as compared to the miR-synthetic/PEI-transfected ECs. Furthermore, the monocyte adhesion was decreased in the miR-125 and miR-mix/PEI-transfected ECs as compared to the miR-synthetic/PEI-transfected ECs (P = 0.01 and P = 0.04, respectively). Conclusion According to the findings, the efficient relations between miR-125 and adhesion molecules may be responsible for the inhibition of monocyte rolling.


2021 ◽  
Vol 331 ◽  
pp. e58
Author(s):  
E. Chegodaev ◽  
N. Nikiforov ◽  
D. Zlenko ◽  
A.N. Orekhov ◽  
E. Ivanova

2021 ◽  
Vol 12 ◽  
Author(s):  
Yan-Hong Li ◽  
Ying Cao ◽  
Fen Liu ◽  
Qian Zhao ◽  
Dilare Adi ◽  
...  

Background: Spatial transcriptomics enables gene expression events to be pinpointed to a specific location in biological tissues. We developed a molecular approach for low-cell and high-fiber Stanford type A aortic dissection and preliminarily explored and visualized the heterogeneity of ascending aortic types and mapping cell-type-specific gene expression to specific anatomical domains.Methods: We collected aortic samples from 15 patients with Stanford type A aortic dissection and a case of ascending aorta was randomly selected followed by 10x Genomics and spatial transcriptomics sequencing. In data processing of normalization, component analysis and dimensionality reduction analysis, different algorithms were compared to establish the pipeline suitable for human aortic tissue.Results: We identified 19,879 genes based on the count level of gene expression at different locations and they were divided into seven groups based on gene expression trends. Major cell that the population may contain are indicated, and we can find different main distribution of different cell types, among which the tearing sites were mainly macrophages and stem cells. The gene expression of these different locations and the cell types they may contain are correlated and discussed in terms of their involvement in immunity, regulation of oxygen homeostasis, regulation of cell structure and basic function.Conclusion: This approach provides a spatially resolved transcriptome− and tissue-wide perspective of the adult human aorta and will allow the application of human fibrous aortic tissues without any effect on genes in different layers with low RNA expression levels. Our findings will pave the way toward both a better understanding of Stanford type A aortic dissection pathogenesis and heterogeneity and the implementation of more effective personalized therapeutic approaches.


2021 ◽  
Vol 21 (1) ◽  
pp. 11-17
Author(s):  
Svetlana V. Maltseva ◽  
Peter V. Pigarevsky ◽  
Natalya G. Davydova ◽  
Vlada A. Snegova

Relevance. Currently, the role of persistent infections in the atherogenesis development mechanism is not fully understood. Therefore, its important to analyze the role of viral infection against the background of the pro-inflammatory cytokines expression in atherosclerotic plaque destabilization. The aim of the work was a comparative immunohistochemical study of cytomegalovirus (CMV) and IL-8 in different types of human atherosclerotic lesions during their destabilization. Materials and methods. The study was carried out on 130 autopsy samples of human aorta. CMV was detected by direct immunofluorescent antibody staining. IL-8 was detected by two-stage streptavidin-biotin antibody staining. Results. It has been shown that active detection of both CMV and IL-8 is characteristic of atherogenesis foci of the arterial intima with the most intense immune-inflammatory changes. The obtained results indicate the synergism of the cellular response to CMV and IL-8 in the vascular wall during the destabilization atherosclerotic lesions process. Conclusion. According to the results of the work, it can be concluded that both the presence of CMV in atherosclerotic lesions and the high production of IL-8 play a significant role in the formation of unstable atherosclerotic plaques in the vascular wall.


Sign in / Sign up

Export Citation Format

Share Document