dragonfly wing
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 21)

H-INDEX

18
(FIVE YEARS 2)

Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 32
Author(s):  
Lung-Jieh Yang ◽  
Vivek-Jabaraj Joseph ◽  
Neethish-Kumar Unnam ◽  
Balasubramanian Esakki

The study of separating different sizes of particles through a microchannel has been an interest in recent years and the primary attention of this study is to isolate the particles to the specific outlets. The present work highly focuses on the design and numerical analysis of a microchip and the microparticles capture using special structures like corrugated dragonfly wing structure and cilia walls. The special biomimetic structured corrugated wing is taken from the cross-sectional area of the dragonfly wing and cilia structure is obtained from the epithelium terminal bronchioles to the larynx from the human body. Parametric studies were conducted on different sizes of microchip scaled and tested up in the range between 2–6 mm and the thickness was assigned as 80 µm in both dragonfly wing structure and cilia walls. The microflow channel is a low Reynolds number regime and with the help of the special structures, the flow inside the microchannel is pinched and a sinusoidal waveform pattern is observed. The pinched flow with sinusoidal waveform carries the particles downstream and induces the particles trapped in desired outlets. Fluid particle interaction (FPI) with a time-dependent solver in COMSOL Multiphysics was used to carry out the numerical study. Two particle sizes of 5 µm and 20 µm were applied, the inlet velocity of 0.52 m/s with an inflow angle of 50° was used throughout the study and it suggested that: the microchannel length of 3 mm with corrugated dragonfly wing structure had the maximum particle capture rate of 20 µm at the mainstream outlet. 80% capture rate for the microchannel length of 3 mm with corrugated dragonfly wing structure and 98% capture rate for the microchannel length of 2 mm with cilia wall structure were observed. Numerical simulation results showed that the cilia walled microchip is superior to the corrugated wing structure as the mainstream outlet can conduct most of the 20 µm particles. At the same time, the secondary outlet can laterally capture most of the 5 µm particles. This biomimetic microchip design is expected to be implemented using the PDMS MEMS process in the future.


2021 ◽  
pp. 1-7
Author(s):  
Vera Stelzer ◽  
Lars Krenkel

BACKGROUND: Due to their corrugated profile, dragonfly wings have special aerodynamic characteristics during flying and gliding. OBJECTIVE: The aim of this study was to create a realistic 3D model of a dragonfly wing captured with a high-resolution micro-CT. To represent geometry changes in span and chord length and their aerodynamic effects, numerical investigations are carried out at different wing positions. METHODS: The forewing of a Camacinia gigantea was captured using a micro-CT. After the wing was adapted an error-free 3D model resulted. The wing was cut every 5 mm and 2D numerical analyses were conducted in Fluent® 2020 R2 (ANSYS, Inc., Canonsburg, PA, USA). RESULTS: The highest lift coefficient, as well as the highest lift-to-drag ratio, resulted at 0 mm and an angle of attack (AOA) of 5∘. At AOAs of 10∘ or 15∘, the flow around the wing stalled and a Kármán vortex street behind the wing becomes visible. CONCLUSIONS: The velocity is higher on the upper side of the wing compared to the lower side. The pressure acts vice versa. Due to the recirculation zones that are formed in valleys of the corrugation pattern the wing resembles the form of an airfoil.


Author(s):  
Fengxiang Xu ◽  
Junyao Wang ◽  
Lin Hua

In this paper, a biomimetic optimizing design of the stiffeners layout of the automotive inner door panels is proposed based on vein unit of dragonfly wing. The distributions features of the dragonfly veins and similarity as stiffeners are analyzed, and then the excellent structural features of mechanical properties of the dragonfly veins are extracted to work as a biomimetic design. In order to research the distribution of the reinforced areas in the interior door panels under various operating conditions, the finite element model is established firstly. Secondly, gray relation theory combined with analytic hierarchy analysis are imposed to determine the weight value of each condition in multi-objective topology optimization to fully consider both objective and subjective factors, and topological optimization results indicate that the stiffeners of the inner door panel are biconically designed. Finally, the original finite element results of the inner door panels are compared with that after optimized with biomimetic stiffeners under the same operating conditions, and the result of the comparison verify the effectiveness of the biomimetic topology design. Specifically, for the dent-resistant and sinking condition, the strength of new door increases by 20.2% and 14.3%, respectively. Therefore, doors with biomimetic stiffeners have an increased resistance to deformation and vibration, while the mass is reduced by 2.7%. The results can provide valuable new ideas for the optimal biomimetic design of automotive door inner panel stiffeners.


2021 ◽  
Author(s):  
HIROKI KAWABE, ◽  
YUICHIRO AOKI ◽  
TOSHIYA NAKAMURA

The aim of this study is to establish a novel aircraft design approach replacing the conventional airframe by utilizing biomimetics. This design approach particularly focused on the dragonfly wing, whose reinforcement structures are composed of cross- veins and longitudinal veins. The cross-veins have been emulated by weighted Centroidal Voronoi Tessellation (WCVT) following the out-of-plane displacement on the skin, while the longitudinal veins have been emulated by extracting a centerline from the topology optimization result on the skin to be reinforced, through image analysis of binarization and skeletonization. The longitudinal layout can reduce the compliance distributing the inner load with only essential reinforcement on the skin without increasing the mass. The weighted CVT layout can improve the effectiveness of the reinforced skin against buckling drastically. Thus, the skin reinforced along the cross- longitudinal layout by the topology optimization and weighted CVT pattern increased buckling load 2.7 times higher even with less mass than the conventional layout.


Matter ◽  
2021 ◽  
Vol 4 (8) ◽  
pp. 2674-2676
Author(s):  
Meng Chen ◽  
Da-Hui Qu ◽  
He Tian
Keyword(s):  

Matter ◽  
2021 ◽  
Author(s):  
JianHua Xu ◽  
Tong Liu ◽  
Yongzheng Zhang ◽  
YaNa Zhang ◽  
Kai Wu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Zhang Zhihao ◽  
Ito Makoto ◽  
Wang Xishu ◽  
Liu Jinsheng

Abstract Dragonfly has remarkable flight efficiency, with unique wing structural properties such as the surface topological vein structures, corrugation, etc. The object of this paper is to identify how the polygonal patterns of the samples with bionic wing veins affected the skin friction. Four kinds of polygonal three-dimensional (3D) patterns were designed and fabricated by additive manufacturing technology, and the skin friction coefficients (Cf) of various models were measured by the wind channel experiments. The quantitative effects of models on Cf with different Reynolds numbers (Re) in laminar, transitional, and turbulent flow conditions were obtained. Results indicated that the law of whole change of the skin friction coefficient versus Re is the same for all patterns which can be expressed by an empirical formula Cf=kReα. The model with mixed square and pentagonal patterns always generates the highest skin friction in the different flow conditions, which was speculated to play an important role on the attenuation of the flow separation of the dragonfly wing.


2021 ◽  
Vol 37 ◽  
pp. 216-229
Author(s):  
Yung Jeh Chu ◽  
Poo Balan Ganesan ◽  
Mohamad Azlin Ali

Abstract The dragonfly wings provide insights for designing an efficient biomimetic micro air vehicle (BMAV). In this regard, this study focuses on investigating the effect of the pterostigma weight loading and its spatial location on the forewings of dragonfly by using the fluid–structure interaction simulation. This study also investigates the effect of change in the wing elasticity and density on the wing performance. The forewing, which mimics the real dragonfly wing, is flat with a 47.5 mm span and a 0.4 mm thickness. The wing was set to cruise at 3 m/s with a constant flapping motion at a frequency of 25 Hz. This study shows that a small increase of pterostigma loading (11% of wing weight) at the tip of the wing significantly improves the lift to drag ratio, CL/CD, which has 129.16% increment in comparison with no loading. The lift to drag ratio depends on the pterostigma location, pterostigma loading, elastic modulus and density. The results of this study can be used as a reference in future BMAV wing optimization design.


Sign in / Sign up

Export Citation Format

Share Document