flow interaction
Recently Published Documents


TOTAL DOCUMENTS

394
(FIVE YEARS 65)

H-INDEX

33
(FIVE YEARS 4)

MAUSAM ◽  
2021 ◽  
Vol 43 (4) ◽  
pp. 403-410
Author(s):  
S.S. BAWISKAR ◽  
S.M. SINGH

The upper tropospheric energetics of the standing eddies in wave number domain during contrasting monsoon' activity over India have been investigated. Two normal monsoon years (1970. 1971) and two drought monsoon years (1972, 1979) are considered for a comparative study, Energy equations of Saltzman (1957) are used to compute wave-wave Interaction and wave to zonal mean flow Interaction. Analysis of the results show that the standing eddies in the region of tropical easterlies (5°S-24 .2°N) have larger kinetic energy than those in the region of southern hemispheric, westerlies (24.2°S-5°S). Wave to zonal mean flow interaction of all waves (waves 1-15) Indicate that the standing eddies are a source of kinetic energy to zonal mean flow ID the region of easterlies and there sink of kinetic energy to zonal mean flow in the region of westerlies. In the region of easterlies planetary standing waves (waves 1-2) are the major kinetic energy source to other standing waves and wave-wave Interaction of all waves leads to positive Imbalance of kinetic energy during normal monsoon years (1970, 1971) and negative imbalance, of kinetic, energy during drought monsoon years (1972, 19~9). In the region of westerlies the imbalance of kinetic energy IS negative during normal monsoon years and positive during drought monsoon years.


2021 ◽  
Author(s):  
Takaya Uchida ◽  
Quentin Jamet ◽  
William K. Dewar ◽  
Julien Le Sommer ◽  
Thierry Penduff ◽  
...  

2021 ◽  
Vol 928 ◽  
Author(s):  
Kiera van der Sande ◽  
Gennady A. El ◽  
Mark A. Hoefer

The interaction of localised solitary waves with large-scale, time-varying dispersive mean flows subject to non-convex flux is studied in the framework of the modified Korteweg–de Vries (mKdV) equation, a canonical model for internal gravity wave propagation and potential vorticity fronts in stratified fluids. The effect of large amplitude, dynamically evolving mean flows on the propagation of localised waves – essentially ‘soliton steering’ by the mean flow – is considered. A recent theoretical and experimental study of this new type of dynamic soliton–mean flow interaction for convex flux has revealed two scenarios where the soliton either transmits through the varying mean flow or remains trapped inside it. In this paper, it is demonstrated that the presence of a non-convex cubic hydrodynamic flux introduces significant modifications to the scenarios for transmission and trapping. A reduced set of Whitham modulation equations is used to formulate a general mathematical framework for soliton–mean flow interaction with non-convex flux. Solitary wave trapping is stated in terms of crossing modulation characteristics. Non-convexity and positive dispersion – common for stratified fluids – imply the existence of localised, sharp transition fronts (kinks). Kinks play dual roles as a mean flow and a wave, imparting polarity reversal to solitons and dispersive mean flows, respectively. Numerical simulations of the mKdV equation agree with modulation theory predictions. The mathematical framework developed is general, not restricted to completely integrable equations like mKdV, enabling application beyond the mKdV setting to other fluid dynamic contexts subject to non-convex flux such as strongly nonlinear internal wave propagation that is prevalent in the ocean.


2021 ◽  
Author(s):  
Momoha Nishimura ◽  
Masashi Yamakawa ◽  
Shinichi Asao ◽  
Seiichi Takeuchi ◽  
Mehdi Badri Ghomizad

Abstract This study proposes a method where the flow field variables are communicated between multiple separate moving computational domains and simulates the flow interaction of multiple moving objects. Instead of using the conventional approach with a single fixed computational domain covering the whole flow field, this method advances the moving computational domain (MCD) method in which the computational domain itself moves in line with the motions of an object inside. The computational domains created around each object move independently, and the flow fields of each domain interact where the flows cross. This eliminates the spatial restriction for simulating multiple moving objects. After the results of the shock tube test verify that the interpolation has been achieved between grids, a validation test is conducted in which two spheres are crossed, and the forces exerted on one object due to the other’s crossing at a short distance are calculated. The results verify the reliability of this method and show that it is applicable to the flow interaction of multiple moving objects.


Author(s):  
Ran Tao ◽  
Puxi Li ◽  
Zhifeng Yao ◽  
Ruofu Xiao

Centrifugal impeller is usually designed for water pumping. Fluid get energy from impeller but also lose energy when passing through it. To improve the efficiency and have a better operation stability, it is necessary to understand the flow energy dissipation in centrifugal impeller in pump mode. In this case, a thermodynamic analysis is conducted on a model centrifugal pump unit based on computational fluid dynamics (CFD) simulation. Typical performance curve is found with a positive-slope efficiency curve and a negative-slope head curve. With the decreasing of flow rate, both the impeller head and the flow energy dissipation (FED) will rise up. The FED is found related to the flow regime. The complex undesirable flow pattern induces high FED under off-design conditions especially at very small partial-load. Based on the visualization, FED is found with two main sources including the wall friction and the flow interaction. At over-load and design-load, the wall friction induced FED is dominant. With the decreasing of flow rate, flow interaction induced FED becomes dominant. The typical strong FED sites are found related to the striking, separation, merging and interaction of both smooth flow and vortical flow. The FED analysis will correlate the pump performance estimation and guide the design.


2021 ◽  
Author(s):  
D. Barsi ◽  
D. Lengani ◽  
D. Simoni ◽  
G. Venturino ◽  
F. Bertini ◽  
...  

Abstract In the present work URANS simulations are presented to describe the unsteady interaction process between the flow ingested/ejected from a cavity system and the main flow evolving into a Low Pressure Turbine stage. Particular care is posed on the analysis of the loss generation mechanisms acting outside the stator row and in the rear part of the axial gap separating the cavity flow ejection section and the leading edge plane of the downstream rotor row. The simulated geometry reproduces a typical engine cavity configuration, with upstream and downstream rotor rows reproduced by means of moving bars. Experimental results have been used to validate the simulations. This experimental data cannot explain and quantify alone the overall interaction process between the cavity flows and the main flow. The results of a simulation made by removing the domain of the cavity have been employed in order to better highlight and quantify the effects due to main flow and cavity flows interaction on total pressure loss. A deep inspection of the loss amount along the axial direction makes evident that losses generated in the vane row are basically increased prior to enter into the downstream rotor bars, due to cavity main flow interaction.


Author(s):  
Dario Barsi ◽  
Carlo Costa ◽  
Davide Lengani ◽  
Daniele Simoni ◽  
Giulio Venturino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document