Heuristic maximization of the number of spanning trees in regular graphs

2006 ◽  
Vol 343 (3) ◽  
pp. 309-325
Author(s):  
Jacek Wojciechowski ◽  
Jarosław Arabas ◽  
Błażej Sawionek
10.37236/3752 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Catherine Greenhill ◽  
Matthew Kwan ◽  
David Wind

Let $d\geq 3$ be a fixed integer.   We give an asympotic formula for the expected number of spanning trees in a uniformly random $d$-regular graph with $n$ vertices. (The asymptotics are as $n\to\infty$, restricted to even $n$ if $d$ is odd.) We also obtain the asymptotic distribution of the number of spanning trees in a uniformly random cubic graph, and conjecture that the corresponding result holds for arbitrary (fixed) $d$. Numerical evidence is presented which supports our conjecture.


10.37236/5295 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Jiang Zhou ◽  
Zhongyu Wang ◽  
Changjiang Bu

Let $G$ be a connected graph of order $n$. The resistance matrix of $G$ is defined as $R_G=(r_{ij}(G))_{n\times n}$, where $r_{ij}(G)$ is the resistance distance between two vertices $i$ and $j$ in $G$. Eigenvalues of $R_G$ are called R-eigenvalues of $G$. If all row sums of $R_G$ are equal, then $G$ is called resistance-regular. For any connected graph $G$, we show that $R_G$ determines the structure of $G$ up to isomorphism. Moreover, the structure of $G$ or the number of spanning trees of $G$ is determined by partial entries of $R_G$ under certain conditions. We give some characterizations of resistance-regular graphs and graphs with few distinct R-eigenvalues. For a connected regular graph $G$ with diameter at least $2$, we show that $G$ is strongly regular if and only if there exist $c_1,c_2$ such that $r_{ij}(G)=c_1$ for any adjacent vertices $i,j\in V(G)$, and $r_{ij}(G)=c_2$ for any non-adjacent vertices $i,j\in V(G)$.


Author(s):  
Catherine Greenhill ◽  
Mikhail Isaev ◽  
Gary Liang

Abstract Let $${{\mathcal G}_{n,r,s}}$$ denote a uniformly random r-regular s-uniform hypergraph on the vertex set {1, 2, … , n}. We establish a threshold result for the existence of a spanning tree in $${{\mathcal G}_{n,r,s}}$$ , restricting to n satisfying the necessary divisibility conditions. Specifically, we show that when s ≥ 5, there is a positive constant ρ(s) such that for any r ≥ 2, the probability that $${{\mathcal G}_{n,r,s}}$$ contains a spanning tree tends to 1 if r > ρ(s), and otherwise this probability tends to zero. The threshold value ρ(s) grows exponentially with s. As $${{\mathcal G}_{n,r,s}}$$ is connected with probability that tends to 1, this implies that when r ≤ ρ(s), most r-regular s-uniform hypergraphs are connected but have no spanning tree. When s = 3, 4 we prove that $${{\mathcal G}_{n,r,s}}$$ contains a spanning tree with probability that tends to 1, for any r ≥ 2. Our proof also provides the asymptotic distribution of the number of spanning trees in $${{\mathcal G}_{n,r,s}}$$ for all fixed integers r, s ≥ 2. Previously, this asymptotic distribution was only known in the trivial case of 2-regular graphs, or for cubic graphs.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Mei-Hui Wu ◽  
Long-Yeu Chung

The number of spanning trees in graphs or in networks is an important issue. The evaluation of this number not only is interesting from a mathematical (computational) perspective but also is an important measure of reliability of a network or designing electrical circuits. In this paper, a simple formula for the number of spanning trees of the Cartesian product of two regular graphs is investigated. Using this formula, the number of spanning trees of the four well-known regular networks can be simply taken into evaluation.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 171 ◽  
Author(s):  
Fei Wen ◽  
You Zhang ◽  
Muchun Li

In this paper, we introduce a new graph operation called subdivision vertex-edge join (denoted by G 1 S ▹ ( G 2 V ∪ G 3 E ) for short), and then the adjacency spectrum, the Laplacian spectrum and the signless Laplacian spectrum of G 1 S ▹ ( G 2 V ∪ G 3 E ) are respectively determined in terms of the corresponding spectra for a regular graph G 1 and two arbitrary graphs G 2 and G 3 . All the above can be viewed as the generalizations of the main results in [X. Liu, Z. Zhang, Bull. Malays. Math. Sci. Soc., 2017:1–17]. Furthermore, we also determine the normalized Laplacian spectrum of G 1 S ▹ ( G 2 V ∪ G 3 E ) whenever G i are regular graphs for each index i = 1 , 2 , 3 . As applications, we construct infinitely many pairs of A-cospectral mates, L-cospectral mates, Q-cospectral mates and L -cospectral mates. Finally, we give the number of spanning trees, the (degree-)Kirchhoff index and the Kemeny’s constant of G 1 S ▹ ( G 2 V ∪ G 3 E ) , respectively.


2019 ◽  
Vol 11 (05) ◽  
pp. 1950056
Author(s):  
Shreekant Patil ◽  
Mallikarjun Mathapati

Recently Indulal and Balakrishnan [Distance spectrum of Indu–Bala product of graphs, AKCE Int. J. Graph Comb. 13 (2016) 230–234] put forward a new graph operation, namely, the Indu–Bala product [Formula: see text] of graphs [Formula: see text] and [Formula: see text], and it is obtained from two disjoint copies of the join [Formula: see text] of [Formula: see text] and [Formula: see text] by joining the corresponding vertices in the two copies of [Formula: see text]. In this paper, we obtain the adjacency spectra, the Laplacian spectra and the signless Laplacian spectra of [Formula: see text] in terms of the corresponding spectra of [Formula: see text] and [Formula: see text]. As applications, these results enable us to construct infinitely many pairs of respective cospectral graphs. Further, the Laplacian spectra enable us to get the formulas of the number of spanning trees and Kirchhoff index of [Formula: see text] in terms of the Laplacian spectra of regular graphs [Formula: see text] and [Formula: see text].


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1374
Author(s):  
Umar Ali ◽  
Hassan Raza ◽  
Yasir Ahmed

The normalized Laplacian is extremely important for analyzing the structural properties of non-regular graphs. The molecular graph of generalized phenylene consists of n hexagons and 2n squares, denoted by Ln6,4,4. In this paper, by using the normalized Laplacian polynomial decomposition theorem, we have investigated the normalized Laplacian spectrum of Ln6,4,4 consisting of the eigenvalues of symmetric tri-diagonal matrices LA and LS of order 4n+1. As an application, the significant formula is obtained to calculate the multiplicative degree-Kirchhoff index and the number of spanning trees of generalized phenylene network based on the relationships between the coefficients and roots.


Sign in / Sign up

Export Citation Format

Share Document