scholarly journals The Number of Spanning Trees of the Cartesian Product of Regular Graphs

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Mei-Hui Wu ◽  
Long-Yeu Chung

The number of spanning trees in graphs or in networks is an important issue. The evaluation of this number not only is interesting from a mathematical (computational) perspective but also is an important measure of reliability of a network or designing electrical circuits. In this paper, a simple formula for the number of spanning trees of the Cartesian product of two regular graphs is investigated. Using this formula, the number of spanning trees of the four well-known regular networks can be simply taken into evaluation.

10.37236/3752 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Catherine Greenhill ◽  
Matthew Kwan ◽  
David Wind

Let $d\geq 3$ be a fixed integer.   We give an asympotic formula for the expected number of spanning trees in a uniformly random $d$-regular graph with $n$ vertices. (The asymptotics are as $n\to\infty$, restricted to even $n$ if $d$ is odd.) We also obtain the asymptotic distribution of the number of spanning trees in a uniformly random cubic graph, and conjecture that the corresponding result holds for arbitrary (fixed) $d$. Numerical evidence is presented which supports our conjecture.


10.37236/5295 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Jiang Zhou ◽  
Zhongyu Wang ◽  
Changjiang Bu

Let $G$ be a connected graph of order $n$. The resistance matrix of $G$ is defined as $R_G=(r_{ij}(G))_{n\times n}$, where $r_{ij}(G)$ is the resistance distance between two vertices $i$ and $j$ in $G$. Eigenvalues of $R_G$ are called R-eigenvalues of $G$. If all row sums of $R_G$ are equal, then $G$ is called resistance-regular. For any connected graph $G$, we show that $R_G$ determines the structure of $G$ up to isomorphism. Moreover, the structure of $G$ or the number of spanning trees of $G$ is determined by partial entries of $R_G$ under certain conditions. We give some characterizations of resistance-regular graphs and graphs with few distinct R-eigenvalues. For a connected regular graph $G$ with diameter at least $2$, we show that $G$ is strongly regular if and only if there exist $c_1,c_2$ such that $r_{ij}(G)=c_1$ for any adjacent vertices $i,j\in V(G)$, and $r_{ij}(G)=c_2$ for any non-adjacent vertices $i,j\in V(G)$.


2006 ◽  
Vol 343 (3) ◽  
pp. 309-325
Author(s):  
Jacek Wojciechowski ◽  
Jarosław Arabas ◽  
Błażej Sawionek

10.37236/2510 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Olivier Bernardi

We give two combinatorial proofs of a product formula for the number of spanning trees of the $n$-dimensional hypercube. The first proof is based on the assertion that if one chooses a uniformly random rooted spanning tree of the hypercube and orient each edge from parent to child, then the parallel edges of the hypercube get orientations which are independent of one another. This independence property actually holds in a more general context and has intriguing consequences. The second proof uses some "killing involutions'' in order to identify the factors in the product formula. It leads to an enumerative formula for the spanning trees of the $n$-dimensional hypercube augmented with diagonals edges, counted according to the number of edges of each type. We also discuss more general formulas, obtained using a matrix-tree approach, for the number of spanning trees of the Cartesian product of complete graphs.


2014 ◽  
Vol 2014 ◽  
pp. 1-23 ◽  
Author(s):  
S. N. Daoud

Spanning trees have been found to be structures of paramount importance in both theoretical and practical problems. In this paper we derive new formulas for the complexity, number of spanning trees, of some products of complete and complete bipartite graphs such as Cartesian product, normal product, composition product, tensor product, symmetric product, and strong sum, using linear algebra and matrix theory techniques.


Author(s):  
Catherine Greenhill ◽  
Mikhail Isaev ◽  
Gary Liang

Abstract Let $${{\mathcal G}_{n,r,s}}$$ denote a uniformly random r-regular s-uniform hypergraph on the vertex set {1, 2, … , n}. We establish a threshold result for the existence of a spanning tree in $${{\mathcal G}_{n,r,s}}$$ , restricting to n satisfying the necessary divisibility conditions. Specifically, we show that when s ≥ 5, there is a positive constant ρ(s) such that for any r ≥ 2, the probability that $${{\mathcal G}_{n,r,s}}$$ contains a spanning tree tends to 1 if r > ρ(s), and otherwise this probability tends to zero. The threshold value ρ(s) grows exponentially with s. As $${{\mathcal G}_{n,r,s}}$$ is connected with probability that tends to 1, this implies that when r ≤ ρ(s), most r-regular s-uniform hypergraphs are connected but have no spanning tree. When s = 3, 4 we prove that $${{\mathcal G}_{n,r,s}}$$ contains a spanning tree with probability that tends to 1, for any r ≥ 2. Our proof also provides the asymptotic distribution of the number of spanning trees in $${{\mathcal G}_{n,r,s}}$$ for all fixed integers r, s ≥ 2. Previously, this asymptotic distribution was only known in the trivial case of 2-regular graphs, or for cubic graphs.


1988 ◽  
Vol 23 (3-4) ◽  
pp. 185-200 ◽  
Author(s):  
C. S. Yang ◽  
J. F. Wang ◽  
J. Y. Lee ◽  
F. T. Boesch

2017 ◽  
Vol 88 (2) ◽  
pp. 294-301 ◽  
Author(s):  
Helin Gong ◽  
Xian'an Jin

Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 171 ◽  
Author(s):  
Fei Wen ◽  
You Zhang ◽  
Muchun Li

In this paper, we introduce a new graph operation called subdivision vertex-edge join (denoted by G 1 S ▹ ( G 2 V ∪ G 3 E ) for short), and then the adjacency spectrum, the Laplacian spectrum and the signless Laplacian spectrum of G 1 S ▹ ( G 2 V ∪ G 3 E ) are respectively determined in terms of the corresponding spectra for a regular graph G 1 and two arbitrary graphs G 2 and G 3 . All the above can be viewed as the generalizations of the main results in [X. Liu, Z. Zhang, Bull. Malays. Math. Sci. Soc., 2017:1–17]. Furthermore, we also determine the normalized Laplacian spectrum of G 1 S ▹ ( G 2 V ∪ G 3 E ) whenever G i are regular graphs for each index i = 1 , 2 , 3 . As applications, we construct infinitely many pairs of A-cospectral mates, L-cospectral mates, Q-cospectral mates and L -cospectral mates. Finally, we give the number of spanning trees, the (degree-)Kirchhoff index and the Kemeny’s constant of G 1 S ▹ ( G 2 V ∪ G 3 E ) , respectively.


Sign in / Sign up

Export Citation Format

Share Document