Adaptive observer-based control for uncertain nonlinear stochastic systems with time-delay

2016 ◽  
Vol 353 (14) ◽  
pp. 3595-3609 ◽  
Author(s):  
Xiufeng Miao ◽  
Longsuo Li
2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
N. Zhou ◽  
R. H. Huan

The problem of asymptotic stability of delay-controlled nonlinear stochastic systems with actuator failures is investigated in this paper. Such a system is formulated as a continuous-discrete hybrid system based on the random switch model of failure-prone actuator. Time delay control force is converted into delay-free one by randomly periodic characteristic of the system. Using limit theorem and stochastic averaging, an approximate formula for the largest Lyapunov exponent of the original system is then derived, from which necessary and sufficient conditions for asymptotic stability are obtained. The validity and utility of the proposed procedure are demonstrated by using a stochastically driven nonlinear two-degree system with time delay feedback and actuator failure.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Ming Gao ◽  
Weihai Zhang ◽  
Zhengmao Zhu

This paper studies the infinite horizonH∞control problem for a general class of nonlinear stochastic systems with time-delay and multiplicative noise. The exponential/asymptotic mean squareH∞control design of delayed nonlinear stochastic systems is presented by solving Hamilton-Jacobi inequalities. Two numerical examples are provided to show the effectiveness of the proposed design method.


1974 ◽  
Vol 96 (3) ◽  
pp. 353-357
Author(s):  
L. D. Zirkle ◽  
L. G. Clark

A method is introduced for determining approximate properties of the response of nonlinear stochastic systems. The method is based in concept on the variational methods of mechanics and allows the consideration of classes of systems not readily subject to analysis by existing techniques. Three examples are presented illustrating the application to nonlinear systems with non-stationary inputs, non-Gaussian inputs and with time delay. The main limitation of the technique is the necessity for assuming a meaningful form for the approximate solution in terms of arbitrary random variables.


Author(s):  
Shan-Liang Zhu ◽  
Ming-Xin Wang ◽  
Yu-Qun Han

In this article, the problem of adaptive multi-dimensional Taylor network control for strict-feedback nonlinear stochastic systems with time-delay is investigated. To overcome the control degradation resulting from the delay terms, the appropriate integral-type Lyapunov–Krasovskii functions are introduced. A novel adaptive multi-dimensional Taylor network control scheme is provided via backstepping technique. The proposed adaptive multi-dimensional Taylor network controller can ensure that all signals in the closed-loop system are bounded in probability and the tracking error eventually converges to a small neighborhood of the origin. Three simulation examples are given to demonstrate the effectiveness of the proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document