Fixed-time synchronization of memristor-based fuzzy cellular neural network with time-varying delay

2018 ◽  
Vol 355 (14) ◽  
pp. 6780-6809 ◽  
Author(s):  
Mingwen Zheng ◽  
Lixiang Li ◽  
Haipeng Peng ◽  
Jinghua Xiao ◽  
Yixian Yang ◽  
...  
Author(s):  
Umesh Kumar ◽  
Subir Das ◽  
Chuangxia Huang ◽  
Jinde Cao

In this article, sufficient conditions for fixed-time synchronization of time-delayed quaternion-valued neural networks (QVNNs) are derived. Firstly, QVNNs are decomposed into four real-valued systems. Then using the available lemmas and by constructing the Lyapunov function, the synchronization criterion for the neural networks is proposed. Activation functions satisfy the Lipschitz condition. A suitable controller has been designed to synchronize the master–slave systems. The effectiveness of the proposed result is validated through a comparison of the settling time obtained by applying two different existing lemmas to a particular problem of synchronization of two identical QVNNs with time-varying delay with the help of suitable controllers.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Baolin Qiu ◽  
Lixiang Li ◽  
Haipeng Peng ◽  
Yixian Yang

This paper concerns the problem of fixed/finite-time synchronization of hybrid coupled dynamical networks. The considered dynamical networks with multilinks contain only one transmittal time-varying delay for each subnetwork, which makes us get hold of more interesting and practical points. Two kinds of delay-dependent feedback controllers with multilinks as well as appropriate Lyapunov functions are defined to achieve the goal of fixed-time synchronization and finite-time synchronization for the networks. Some novel and effective criteria of hybrid coupled networks are derived based on fixed-time and finite-time stability analysis. Finally, two numerical simulation examples are given to show the effectiveness of the results proposed in our paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fengxia Xu ◽  
Yao Cheng ◽  
Hongliang Ren ◽  
Shili Wang

U-model can approximate a large class of smooth nonlinear time-varying delay system to any accuracy by using time-varying delay parameters polynomial. This paper proposes a new approach, namely, U-model approach, to solving the problems of analysis and synthesis for nonlinear systems. Based on the idea of discrete-time U-model with time-varying delay, the identification algorithm of adaptive neural network is given for the nonlinear model. Then, the controller is designed by using the Newton-Raphson formula and the stability analysis is given for the closed-loop nonlinear systems. Finally, illustrative examples are given to show the validity and applicability of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document