Spatial and temporal variability of daily precipitation concentration in the Lancang River basin, China

2013 ◽  
Vol 495 ◽  
pp. 197-207 ◽  
Author(s):  
Wanli Shi ◽  
Xuezhong Yu ◽  
Wengen Liao ◽  
Ying Wang ◽  
Baozhen Jia
2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Ya Huang ◽  
Hao Wang ◽  
Weihua Xiao ◽  
Li-hua Chen ◽  
Deng-hua Yan ◽  
...  

The statistical characteristics of precipitation play important roles not only in flood and drought risk assessments but also in water resource management. This paper implements a statistical analysis to study the spatial and temporal variability in precipitation in the upper reaches of the Hongshui River basin (UHRB), southwestern China, by analysing time series of daily precipitation from 18 weather stations during the period of 1959 to 2015. To detect precipitation concentrations and the associated patterns, three indices, the precipitation concentration index (PCI), precipitation concentration degree (PCD), and precipitation concentration period (PCP), were used. The relationships between the precipitation concentration indices (PCI, PCD, and PCP) and geographic variables (latitude, longitude, and elevation), large-scale atmospheric circulation indices, and summer monsoon indices were investigated to identify specific dependencies and spatial patterns in the precipitation distribution and concentration. The results show that high PCI values were mainly observed in the northeastern portion of the basin, whereas low PCI values were mainly detected in the southwest. The Mann-Kendall test results demonstrate that the majority of the UHRB is characterized by nonsignificant trends in the PCI, PCD, and PCP from 1959 to 2015. The PCP results reveal that rainfall in the UHRB mainly occurs in summer months, and the rainy season arrives earlier in the eastern UHRB than in the western UHRB. Additionally, the PCD results indicate that the rainfall in the western UHRB is more dispersed throughout the year than that in the eastern UHRB. Compared with other geographical factors, longitude is the most important variable that governs the spatial distribution and variations in annual precipitation and the precipitation concentration indices. Due to a combination of topography, the Indian subtropical high, and monsoon weakening, precipitation may be more concentrated in one period, especially in the eastern part of the basin, which increases the risk of drought.


2014 ◽  
Vol 2 (3) ◽  
pp. 33-46
Author(s):  
Zuzanna Bielec-Bąkowska

AbstractThis paper addresses spatial and temporal variability in the occurrence of thunderstorms and related precipitation in southern Poland between 1951 and 2010. The analysis was based on thunderstorm observations and daily precipitation totals (broken down into the few ranges) from 15 meteorological stations. It was found that precipitation accompanied an overwhelming majority of thunderstorms. The most frequent range of thunderstorm precipitation totals was 0.1–10.0 mm which accounted for 60% of all values while precipitation higher than 20.0 mm accounted only for ca. 8%. During the study period, long-term change in the number of days with thunderstorm precipitation within a certain range displayed no clear-cut trends. Exceptions included: 1) an increase in the number of days with thunderstorm precipitation in the lowest range of totals (0.1–10.0 mm) at Katowice, Tarnów, Rzeszów and Lesko and decrease at Mt. Kasprowy Wierch, 2) an increase in the range 10.1–20.0 mm at Zakopane and 20.1–30.0 mm at Opole, 3) a decrease of the top range (more than 30.0 mm) at Mt. Śnieżka. It was found that the heaviest thunderstorm precipitation events, i.e. totalling more than 30 mm, and those events that covered all or most of the study area, occurred at the time of air advection from the southern or eastern sectors and a passage of atmospheric fronts.


Sign in / Sign up

Export Citation Format

Share Document