precipitation concentration
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 55)

H-INDEX

19
(FIVE YEARS 7)

Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Yuan Liu ◽  
Dongchun Yan ◽  
Anbang Wen ◽  
Zhonglin Shi ◽  
Taili Chen ◽  
...  

In this study, the temporal and spatial patterns of rainfall in the Longchuan River basin from 1977 to 2017 were analyzed, to assess the feature of precipitation. Based on the daily precipitation time series, the Lorenz curve, precipitation concentration index (PCI), precipitation concentration degree (PCD), and the precipitation concentration period (PCP) were used to evaluate the precipitation distribution characteristics. The PCI, PCD and PCP in five categories, defined by the fixed thresholds, were proposed to investigate the concentrations, and the average values indicated the higher concentrations in the higher intensities. The indices showed strong irregularity of daily and monthly precipitation distributions in this basin. The decrease in the PCD revealed an increase in the proportion of precipitation in the dry season. The rainy days of slight precipitation in the upper and lower basins with significant downward trends (−13.13 d/10 a, −7.78 d/10 a) led to longer dry spells and an increase in the risk of drought, even severe in the lower area. In the upper basin, the increase in rainfall erosivity was supported by the upward trend in the PCIw of heavy precipitation and the simple daily intensity index (SDII) of extreme precipitation. Moreover, the PCP of light precipitation, moderate precipitation, and heavy precipitation concentrated earlier at the end of July. The results of this study can provide beneficial reference information to water resource planning, reservoir operation, and agricultural production in the basin.


2021 ◽  
Author(s):  
Arijit De ◽  
Srishty Shreya ◽  
Neel Sarkar ◽  
Animesh Maitra

Study of long term variability of temperature and rainfall in the context of climate change is of much importance particularly in the region where rainfed agriculture is predominant. Long term trends of temperature and rainfall have been investigated over Kolkata, India, a tropical region using gridded monthly precipitation and temperature data obtained from Global Precipitation and Climate Centre (GPCC V7) with 0.5° X 0.5° resolution for the period 1901 to 2014. Precipitation concentration index, coefficient of variation, rainfall anomaly have been calculated and Palmer drought severity index data have been analyzed. Furthermore, Mann-Kendall test and sen’s slope estimator have been used to detect time series trend. Annual temperature and rainfall have been increased with a rate of 0.0082°C/ year and 0.03 mm/ year respectively. Statistically significant increasing trend has been observed for most of the months for temperature and rainfall. Winter and monsoon period shows highest and lowest inter-annual variability respectively. Rainfall with high precipitation concentration index (16-20) has been observed for the period 1951-1975 and 1976-2000. It has been observed that the number of years with dry conditions have been increased. However, the intensity of dryness is very near to zero. The information from this study will be helpful for the farmers to plan for resilient farming.


2021 ◽  
Author(s):  
Mohammad Darand ◽  
Farshad Pazhoh

Abstract This study was conducted to investigate the spatiotemporal variability in precipitation concentration over Iran. For that purpose, daily precipitation data with a spatial resolution of 0.25° × 0.25° from the Asfazari database for the period from 01/01/1962 to 31/12/2019 were used. Three indices including the precipitation concentration index (PCI), precipitation concentration period (PCP), and precipitation concentration degree (PCD) were utilized for examination of the variability in precipitation concentration over the country. The results demonstrated that the central, south-eastern, and eastern parts of the country exhibited maximum temporal precipitation concentration, while the least precipitation concentration could be observed over the Caspian coasts and the northern half of the country. The year 1998 was selected as the change point due to the considerable difference in the values of the examined indices, and the long-term statistical period was divided into two sub-periods before and after the change. During the sub-period after the change point (1999-2019), precipitation concentration has increased in the western, central, eastern, and south-eastern parts of Iran, according to PCI and PCD, and has decreased in the North and Northeast and along the northern coastline of Oman Sea. Furthermore, there have been great spatial differences in the period of occurrence of precipitation along the Northern coasts, according to PCP, varying from November, along the Caspian coasts, to August, along the northern foothills of Alborz Mountains. The PCP index has increased during the sub-period after the change point along the northern coastlines of Persian Gulf and Oman Sea and in parts of the North (along Alborz Mountains), indicating a shift in the period of precipitation from winter to the warm seasons of spring and summer. Moreover, the decrease in PCP in the Northwest and Northeast suggested that the period of occurrence of precipitation has shifted from the second half of winter toward early winter and late fall. After the year of change point, the frequency of rainy days and precipitation have decreased, and PCI and PCD have increased.


Author(s):  
Chao Mei ◽  
Jiahong Liu ◽  
Ze Huang ◽  
Hao Wang ◽  
Kaibo Wang ◽  
...  

Abstract Understanding the spatiotemporal pattern of precipitation concentration is important in the water cycle under changing environments. In this study, the daily precipitation concentration index in the Yangtze River Delta in China is calculated based on the Lorenz curves obtained from the observed data of 36 meteorological stations from 1960 to 2017, and spatiotemporal pattern variations and their possible causes are investigated. The driving forces of elevation, SUNSPOT, El Niño-Antarctic Oscillation, Pacific Decade Oscillation, and Arctic Oscillation are detected with correlation and wavelet analysis. Results show that, the daily precipitation concentration index ranges from 0.55 to 0.62 during the study period, 22 of 36 stations (accounting for 61%) show increasing trends, while three stations increase significantly at the 95% significant level. Relationship analysis indicates that the daily precipitation concentration shows a slightly negative correlation with elevation, while the relationships with SUNSPOT, El Niño-Antarctic Oscillation, Pacific Decade Oscillation, and Arctic Oscillation are complicated and diverse, there are different correlations and significance levels in different years. Further analysis shows that SUNSPOT is significantly correlated with El Niño-Antarctic Oscillation, Pacific Decade Oscillation, and Arctic Oscillation, which suggests that SUNSPOT may be an important factor that drives the changes of the three large-scale atmosphere circulation factors and causes precipitation concentration changing indirectly. These results provide further understandings of precipitation variations, which are meaningful for regional flood risk management under climate change.


Author(s):  
Aziz Benhamrouche ◽  
Javier Martin-Vide ◽  
Quoc Bao Pham ◽  
Mostefa E. Kouachi ◽  
M. Carmen Moreno-Garcia

2021 ◽  
Vol 05 (1) ◽  
pp. 50-67
Author(s):  
Surah Hussain ◽  
Safa Khalil

This research is about analysis seasonality of precipitation concentration in the north of Iraq, by using multiple methods of precipitation concentration Index .The first is the standard vectors method that determines the date of concentration and the number of the rainy months, the second, precipitation concentration index (PCI) that classify the degree of (PCI) annually, supra-seasonal, seasonal depending on monthly precipitation data from nine metrological stations For 36 years (1979-2014), using Excel, Arc map 10.8 and Oriana software in calculates and representation of precipitation concentration. the result shows that all stations in the study area share the same date (Jan.-Feb.) and the stations differ in the length of the rainy season (7-9) month. and for PCI results, PCI annual shows denote a moderate concentration in the whole study area, PCI supra-seasonal value shows (in the wet season uniform rain distribution, the dry season value shows high concentration, PCI seasonal Shows (autumn) moderate concentration, winter: low concentration in all stations, in the spring: PCI value shows the moderate concentration in Erbil, Kirkuk, Sulaymaniyah, Salaheddin, and the other stations shows uniform rain distribution. Keywords: seasonal rain concentration, mathematical vector, PCI.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1274
Author(s):  
Suping Wang ◽  
Qiang Zhang ◽  
Jinsong Wang ◽  
Yuanpu Liu ◽  
Yu Zhang

Based on daily meteorological data from 55 meteorological stations in eastern Gansu from 1960 to 2017, the characteristics of the drought process and precipitation heterogeneity were analyzed, and the relationship between drought and precipitation heterogeneity was evaluated. Results showed that there were 1–3 drought processes in the study area every year. Drought processes in the eastern and north-central regions were more frequent than those in other regions. Droughts were mainly manifested as intra-seasonal droughts, especially across the spring and summer. PCD (Precipitation Concentration Degree, the concentration degree of the precipitation at a certain time) ranged from 0.2 to 0.7 in the area. PCD increased in spring and autumn but decreased in summer and winter for most regions from 1960 to 2017. PCP (Precipitation Concentration Period, the shortest time which the precipitation was concentrated in) was from late April to early May in spring, mid-to-late July in summer, mid-September in autumn, and late January in winter. In the last 58 years, PCP has remained consistent in most regions, varying by approximately 10 days. In addition to insignificant changes in winter, the days with light and moderate rain presented a declining trend, especially in summer and autumn. The larger the PCD, the fewer the days with light and moderate rain, and the stronger the drought intensity. However, in the east-central region, the larger the PCD in autumn, the weaker was the drought intensity. This difference is related to the PCP and the evapotranspiration. Additionally, the later the PCP, the stronger was the drought intensity, particularly in summer and autumn. When PCD was ≥0.5 in spring and ≥0.4 in summer, the PCP was after May and August in spring and summer, respectively. Droughts appeared in 28–56% of periods when seasonal precipitation was above normal. When PCD was ≥0.5 in autumn and PCP was in early and middle September, droughts appeared in 7% of periods when precipitation was above normal. Our results show that although less precipitation is the leading influencing factor of drought in the dry rain-fed agricultural areas, the influence of precipitation heterogeneity should be also considered for the prediction and diagnosis of seasonal drought.


2021 ◽  
Author(s):  
Ibrahim NJOUENWET ◽  
Lucie A. Djiotang Tchotchou ◽  
Brian Odhiambo Ayugi ◽  
Guy Merlin Guenang ◽  
Derbetini A. Vondou ◽  
...  

Abstract The Sudano-Sahelian region of Cameroon is mainly drained by the Benue, Chari and Logone rivers, which are very useful for water resources, especially for irrigation, hydropower generation, and navigation. Long-term changes in mean and extreme rainfall events in the region may be of crucial importance in understanding the impact of climate change. Daily and monthly rainfall data from twenty-five synoptic stations in the study area from 1980 to 2019 and extreme indices from the Expert Team on Climate Change Detection and Indices (ETCCDI) measurements were estimated using the non-parametric Modified Mann-Kendall test and the Sen slope estimator. The precipitation concentration index (PCI), the precipitation concentration degree (PCD), and the precipitation concentration period (PCP) were used to explore the spatio-temporal variations in the characteristics of rainfall concentrations. An increase in extreme rainfall events was observed, leading to an upward trend in mean annual. Trends in consecutive dry days (CDD) are significantly increasing in most parts of the study area. This could mean that the prevalence of drought risk is higher in the study area. Overall, the increase in annual rainfall could benefit the hydro-power sector, agricultural irrigation, the availability of potable water sources, and food security.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6110
Author(s):  
Qin Li ◽  
Xiuguo Liu ◽  
Yulong Zhong ◽  
Mengmeng Wang ◽  
Manxing Shi

As the largest hydroelectric project worldwide, previous studies indicate that the Three Gorges Dam (TGD) affects the local climate because of the changes of hydrological cycle caused by the impounding and draining of the TGD. However, previous studies do not analyze the long-term precipitation changes before and after the impoundment, and the variation characteristics of local precipitation remain elusive. In this study, we use precipitation anomaly data derived from the CN05.1 precipitation dataset between 1988 and 2017 to trace the changes of precipitation before and after the construction of the TGD (i.e., 1988–2002 and 2003–2017), in the Three Gorges Reservoir Area (TGRA). Results showed that the annual and dry season precipitation anomaly in the TGRA presented an increasing trend, and the precipitation anomaly showed a slight decrease during the flood season. After the impoundment of TGD, the precipitation concentration degree in the TGRA decreased, indicating that the precipitation became increasingly uniform, and the precipitation concentration period insignificantly increased. A resonance phenomenon between the monthly average water level and precipitation anomaly occurred in the TGRA after 2011 and showed a positive correlation. Our findings revealed the change of local precipitation characteristics before and after the impoundment of TGD and showed strong evidence that this change had a close relationship with the water level.


Sign in / Sign up

Export Citation Format

Share Document