Multi-Station Runoff-Sediment Modeling Using Seasonal LSTM Models

2021 ◽  
pp. 126672
Author(s):  
Vahid Nourani ◽  
Nazanin Behfar
Keyword(s):  
1996 ◽  
Vol 33 (4-5) ◽  
pp. 297-301 ◽  
Author(s):  
Vít Sova

The influence of lime application to the acid soil on the mobility of phosphorus (P) in runoff was investigated by simulated rainfall in laboratory conditions. The neutralization of the acid soil by appropriate amount of lime significantly increased the portion of loosely bound phosphates in runoff sediment This phenomenon influenced bioavailability of P in runoff which increased after the lime application.


2018 ◽  
Vol 31 (4) ◽  
pp. 232-244
Author(s):  
Yuko ASANO ◽  
Taro UCHIDA ◽  
Masanori KATSUYAMA ◽  
Marino HIRAOKA ◽  
Shigeru MIZUGAKI ◽  
...  

2021 ◽  
Author(s):  
Suresh Kumar ◽  
Ravinder Pal Singh ◽  
Justin George Kalambukattu

Abstract Daily surface runoff, sediment and nutrient loss data collected from a watershed located in Uttarakhand state of Indian Himalayan region, in year 2010-2011 and of which half of the events data were used for calibration and remaining for validation. Model was calibrated for surface runoff, sediment loss and nutrient loss to optimize the input given to the model to predict the sediment loss, erosion and nutrient loss. The calibration was done by changing the sensitive parameters. Analysis showed that SCS CN number was found most sensitive to runoff, followed by saturated hydraulic conductivity, available water-holding capacity, CN retention parameter and C factor whereas erosion control practice (P) factor was found to be most sensitive, followed by C factor, sediment routing coefficient, average upland slope and soil erodibility (K) factor for the sediment and nutrient loss. APEX model calibrated for the watershed and it predicted quite well for the surface runoff (r=0.92, NSE=0.50), sediment loss (r=0.88, NSE=0.61 and nutrients of total carbon (r=0.78, NSE=0.59) and fairly for total nitrogen (r=0.77, NSE=0.19). Surface runoff was predicted well for low and medium rainfall; however, it was over predicted for high rainfall events. Over prediction may be attributed to the unaccountable conservation measures and practices which were not accounted by the model. Similarly, sediment loss was estimated on daily basis at the watershed scale and was well predicted for low and medium rainfalls but under-estimated for high rainfall events. The area is prone to landslips occurred at high rainfall events was not accounted by the model that may be a reason for under prediction of sediment loss by the model.


Sign in / Sign up

Export Citation Format

Share Document