simulated rainfall
Recently Published Documents


TOTAL DOCUMENTS

668
(FIVE YEARS 127)

H-INDEX

47
(FIVE YEARS 6)

CATENA ◽  
2022 ◽  
Vol 211 ◽  
pp. 105971
Author(s):  
Lin Chen ◽  
Jian Wang ◽  
Hao Wang ◽  
Feifei Xu ◽  
Pengshuai Song ◽  
...  
Keyword(s):  

Geoderma ◽  
2022 ◽  
Vol 406 ◽  
pp. 115520
Author(s):  
Ping Chen ◽  
Jia Sun ◽  
Liang Ma ◽  
Yinping Chen ◽  
Jiangbao Xia

Jalawaayu ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 1-19
Author(s):  
Muhammad Tanjilur Rahman ◽  
Md. Nazmul Ahasan ◽  
Md. Abdul Mannan ◽  
Madan Sigdel ◽  
Dibas Shrestha ◽  
...  

Regional climate model is a scientific tool to monitor present climate change and to provide reliable estimation of future climate projection. In this study, the Regional Climate Model version 4.7 (RegCM4.7) developed by International Centre for Theoretical Physics (ICTP) has been adopted to simulate rainfall scenario of Bangladesh. The study examines model performance of rainfall simulation through the period of 1991-2018 with ERA-Interim75 data of 75 km horizontal resolution as lateral boundaries, downscaled at 25km resolution using the mixed convective precipitation scheme; MIT-Emanuel scheme over land and Grell scheme with Fritsch-Chappell closure over ocean. The simulated rainfall has been compared both at spatial and temporal scales (monthly, seasonal and annual) with observed data collected from Bangladesh Meteorological Department (BMD) and Climate Research Unit (CRU). Simulated annual rainfall showed that the model overestimated in most of the years. Overestimation has been observed in the monsoon and underestimation in pre-monsoon and post-monsoon seasons. Spatial distribution of simulated rainfall depicts overestimation in the southeast coastal region and underestimation in the northwest and northeast border regions of Bangladesh. Better estimation of rainfall has been found in the central and eastern parts of the country. The simulated annual rainfall has been validated through the Linear Scaling bias correction method for the years of 2016, 2017, and 2018 considering the rainfall of 1991-2015 as reference. The bias correction with linear scaling method gives fairly satisfactory results and it can be considered in the future projection of rainfall over Bangladesh.


2021 ◽  
Author(s):  
Harris Ramli ◽  
Siti Aimi Nadia Mohd Yusoff ◽  
Mastura Azmi ◽  
Nuridah Sabtu ◽  
Muhd Azril Hezmi

Abstract. It is difficult to define the hydrologic and hydraulic characteristics of rain for research purposes, especially when trying to replicate natural rainfall using artificial rain on a small laboratory scale model. The aim of this paper was to use a drip-type rainfall simulator to design, build, calibrate, and run a simulated rainfall. Rainfall intensities of 40, 60 and 80 mm/h were used to represent heavy rainfall events of 1-hour duration. Flour pellet methods were used to obtain the drop size distribution of the simulated rainfall. The results show that the average drop size for all investigated rainfall intensities ranges from 3.0–3.4 mm. The median value of the drop size distribution or known as D50 of simulated rainfall for 40, 60 and 80 mm/h are 3.4, 3.6, and 3.7 mm, respectively. Due to the comparatively low drop height (1.5 m), the terminal velocities monitored were between 63–75 % (8.45–8.65 m/s), which is lower than the value for natural rainfall with more than 90 % for terminal velocities. This condition also reduces rainfall kinetic energy of 25.88–28.51 J/m2mm compared to natural rainfall. This phenomenon is relatively common in portable rainfall simulators, representing the best exchange between all relevant rainfall parameters obtained with the given simulator set-up. Since the rainfall can be controlled, the erratic and unpredictable changeability of natural rainfall is eliminated. Emanating from the findings, drip-types rainfall simulator produces rainfall characteristics almost similar to natural rainfall-like characteristic is the main target.


2021 ◽  
Vol 13 (19) ◽  
pp. 10614
Author(s):  
Hongli Li ◽  
Haiou Shen ◽  
Yu Wang ◽  
Yin Wang ◽  
Qiang Gao

Ridge tillage and straw returning are tillage practices widely used in the Chinese Mollisol region. However, the effects of ridge tillage combined with straw returning on runoff and soil loss control are still unclear. The objective of this study was to compare the effects of ridge tillage practices (contour ridge (CR)) and longitudinal ridge (LR), straw returning practices (straw on the furrow surface (SS)) and straw below the furrow (SB)), and their interactions on the runoff and soil loss by using simulated rainfall experiment. Two rainfall intensities (45 and 60 mm h−1) were applied to six combinations of ridge tillage and straw returning (contour ridge treatment, contour ridge with straw on the furrow surface treatment, contour ridge with straw below the furrow treatment, longitudinal ridge treatment, longitudinal ridge with straw on the furrow surface treatment, and longitudinal ridge with straw below the furrow treatment) on a 5° slope. The results showed that the phenomenon of ridge failure was common in the treatments with contour ridge. The average runoff rate and soil loss rate after ridge failure for treatments with contour ridge were separated 2.8 and 3.5 times greater than those of before failure at 60 mm h−1. However, the corresponding values were only 68.6% and 43.3% of the average value of longitudinal ridge treatment and longitudinal ridge with straw below the furrow treatment at 60 mm h−1. The water storage capacities of treatments with contour ridge remained constant when the rainfall intensity varied. The water storage capacities of contour ridge with straw on and below the furrow treatments were separate 3.0 and 1.0 mm less than that of contour ridge. However, longitudinal ridge with straw on the furrow surface treatment increased the runoff rate by 7.4% but reduced the soil loss rate by 72.6% when compared with longitudinal ridge treatment and longitudinal ridge with straw below the furrow treatment under the two rainfall intensities. Longitudinal with straw on the furrow surface treatment was more conducive to the stability of ridges, and there was no significant difference in total soil loss between longitudinal ridge with straw on the furrow surface treatment and treatments with contour ridge. This study was based on simulated rainfall conditions, and its adaptability under long-term positioning monitor in the field should be added in future.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11962
Author(s):  
Zhensong Li ◽  
Liqiang Wan ◽  
Shuo Li ◽  
Xianglin Li ◽  
Feng He ◽  
...  

Climate change (rainfall events and global warming) affects the survival of alfalfa (Medicago sativa L.) in winter. Appropriate water management can quickly reduce the mortality of alfalfa during winter. To determine how changes in water affect the cold resistance of alfalfa, we explored the root system traits under different rainfall events and the effects on cold resistance in three alfalfa cultivars. These were exposed to three simulated rainfall events (SRE) × two phases in a randomized complete block design with six replications. The three cultivars were WL168, WL353 and WL440, and the three SRE were irrigation once every second day (D2), every four days (D4) and every eight days (D8). There were two phases: before cold acclimation and after cold acclimation. Our results demonstrated that a period of exposure to low temperature was required for alfalfa to achieve maximum cold resistance. The root system tended toward herringbone branching under D8, compared with D2 and D4, and demonstrated greater root biomass, crown diameter, root volume, average link length and topological index. Nevertheless, D8 had less lateral root length, root surface area, specific root length, root forks and fractal dimensions. Greater root biomass and topological index were beneficial to cold resistance in alfalfa, while more lateral roots and root forks inhibited its ability to survive winter. Alfalfa roots had higher proline, soluble sugar and starch content in D8 than in D2 and D4. In contrast, there was lower malondialdehyde in D8, indicating that alfalfa had better cold resistance following a longer irrigation interval before winter. After examining root biomass, root system traits and physiological indexes we concluded that WL168 exhibited stronger cold resistance. Our results contribute to greater understanding of root and cold stress, consequently providing references for selection of cultivars and field water management to improve cold resistance of alfalfa in the context of changes in rainfall patterns.


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 854
Author(s):  
Leandro Tropaldi ◽  
Caio A. Carbonari ◽  
Ivana Paula F. S. de Brito ◽  
Ana Karollyna A. de Matos ◽  
Carolina P. de Moraes ◽  
...  

Herbicide formulations can alter the herbicide performance, affecting the application safety and weed control efficiency. Thus, the objective of this work was to compare the dynamics of clomazone herbicide applied single and combined with sulfentrazone on sugarcane (Saccharum spp.) straw. Laminated polypropylene containers filled with sugarcane straw (10 t ha−1) were subjected to two clomazone formulations (microencapsulated and conventional formulations; 1200 g ha−1) applied single or combined with sulfentrazone (600 g ha−1) with four replications, and the experiment was duplicated. The application was performed indoors with an automated sprayer. After application, accumulated rainfall depths (0, 5, 10, 20, 50, and 100 mm) on the treated containers were simulated soon after the herbicide applications, and the percolated waters were subsequently collected for herbicide quantification by chromatography and mass spectrometry (LC-MS/MS). The microencapsulated formulation of clomazone applied single or combined with sulfentrazone enabled the recovery of higher quantity of clomazone (>80%), with the advantage that a large percentage remained encapsulated (>70%), thus decreasing losses and increasing the product efficiency. The 30 mm simulated rainfall efficiently carried the clomazone herbicide when its microencapsulated formulation was applied, whereas its conventional formulation required higher rainfall depths (60 mm). Sulfentrazone was easily carried through the sugarcane straw by the rainfall depths when it was combined with clomazone, regardless of the clomazone formulation. The clomazone formulation affect the percolation dynamics of this herbicide through the sugarcane straw.


Author(s):  
Jens Erik Blomquist ◽  
Kerstin Berglund

Two dates (early, normal) for application and incorporation of structure lime to clay soil were examined at four field sites, to test whether early liming had more favourable effects on aggregate stability. Aggregate size distribution measurements revealed a finer tilth at the early liming date (20 August) than the normal date (14 September). Aggregate stability estimated one year later, using as a proxy turbidity in leachate from 2–5 mm aggregates subjected to two simulated rainfall events, was significantly improved (11% lower turbidity) with early compared with normal liming date. Three years after structure liming, soil structural stability measurements on lysimeters (15 cm high, inner diameter 18 cm) subjected to repeated simulated rainfall events showed no significant differences in turbidity in leachate between the early and normal liming dates. However, there was a strong interaction between liming date and site indicating different reactions at different sites. Our results suggest that early spreading and incorporation can improve the success of structure liming, but only if soil conditions are favourable.


Sign in / Sign up

Export Citation Format

Share Document