Genotypic variability and relationships between mite infestation levels, mite damage, grooming intensity, and removal of Varroa destructor mites in selected strains of worker honey bees (Apis mellifera L.)

2012 ◽  
Vol 110 (3) ◽  
pp. 314-320 ◽  
Author(s):  
Ernesto Guzman-Novoa ◽  
Berna Emsen ◽  
Peter Unger ◽  
Laura G. Espinosa-Montaño ◽  
Tatiana Petukhova
2012 ◽  
Vol 64 (5) ◽  
pp. 1194-1199 ◽  
Author(s):  
F.A. Pinto ◽  
A. Puker ◽  
L.M.R.C. Barreto ◽  
D. Message

In Brazil, the ectoparasitic mite of bees Varroa destructor Anderson and Trueman (Acari: Varroidae) remains at low levels of infestation causing no major damage. However, with the introduction and possible dominance of a new haplotype (K) of the mite, usually found in areas with high infestation rates (IR), it is necessary to monitor and select beehives that are resistant to the pest in order to avoid future problems. Several factors are listed as potentially being responsible for the dynamics of mite infestation, among which hygienic behavior (HB) stands out. In this context we sought to evaluate the HB of Africanized honey bees Apis mellifera L. (Hymenoptera: Apidae) compared with the mite IR in apiaries of two municipalities of southeastern Brazil (Taubaté and Viçosa). For the municipality of Taubaté, the average IR was 4.9% (3.4 to 5.8%), while the HB averaged 98.6% (96 to 100%). In Viçosa, the average mite IR was found to be 10.0% (5.4 to 21.0%) with an average value for HB of 57.7% (0 to 79.0%). Results from this research show that IR and HB were negatively correlated (R = -0.9627, P<0.01), suggesting that hives with higher HB have lower IR.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 216
Author(s):  
Matthieu Guichard ◽  
Benoît Droz ◽  
Evert W. Brascamp ◽  
Adrien von Virag ◽  
Markus Neuditschko ◽  
...  

For the development of novel selection traits in honey bees, applicability under field conditions is crucial. We thus evaluated two novel traits intended to provide resistance against the ectoparasitic mite Varroa destructor and to allow for their straightforward implementation in honey bee selection. These traits are new field estimates of already-described colony traits: brood recapping rate (‘Recapping’) and solidness (‘Solidness’). ‘Recapping’ refers to a specific worker characteristic wherein they reseal a capped and partly opened cell containing a pupa, whilst ‘Solidness’ assesses the percentage of capped brood in a predefined area. According to the literature and beekeepers’ experiences, a higher recapping rate and higher solidness could be related to resistance to V. destructor. During a four-year field trial in Switzerland, the two resistance traits were assessed in a total of 121 colonies of Apis mellifera mellifera. We estimated the repeatability and the heritability of the two traits and determined their phenotypic correlations with commonly applied selection traits, including other putative resistance traits. Both traits showed low repeatability between different measurements within each year. ‘Recapping’ had a low heritability (h2 = 0.04 to 0.05, depending on the selected model) and a negative phenotypic correlation to non-removal of pin-killed brood (r = −0.23). The heritability of ‘Solidness’ was moderate (h2 = 0.24 to 0.25) and did not significantly correlate with resistance traits. The two traits did not show an association with V. destructor infestation levels. Further research is needed to confirm the results, as only a small number of colonies was evaluated.


1999 ◽  
Vol 22 (3) ◽  
pp. 321-323 ◽  
Author(s):  
Geraldo Moretto ◽  
Leonidas João de Mello Jr.

Different levels of infestation with the mite Varroa jacobsoni have been observed in the various Apis mellifera races. In general, bees of European races are more susceptible to the mite than African honey bees and their hybrids. In Brazil honey bee colonies are not treated against the mite, though apparently both climate and bee race influence the mite infestation. Six mixed colonies were made with Italian and Africanized honey bees. The percentage infestation by this parasite was found to be significantly lower in adult Africanized (1.69 ± 0.44) than Italian bees (2.79 ± 0.65). This ratio was similar to that found in Mexico, even though the Africanized bees tested there had not been in contact with varroa, compared to more than 20 years of the coexistence in Brazil. However, mean mite infestation in Brazil on both kinds of bees was only about a third of that found in Mexico.


Parasitology ◽  
2018 ◽  
Vol 145 (12) ◽  
pp. 1633-1639 ◽  
Author(s):  
Beatrice T. Nganso ◽  
Ayuka T. Fombong ◽  
Abdullahi A. Yusuf ◽  
Christian W. W. Pirk ◽  
Charles Stuhl ◽  
...  

AbstractAlthough Varroa destructor is the most serious ecto-parasite to the honeybee, Apis mellifera L., some honeybee populations such as Apis mellifera scutellata in Kenya can survive mite infestations without treatment. Previously, we reported that grooming behaviour could be a potential tolerant mechanism expressed by this honeybee subspecies towards mite infestation. However, both hygienic and grooming behaviours could not explain the lower mite-infestation levels recorded in these colonies. Here, we investigated the involvement of other potential resistant mechanisms including suppression of mite reproduction in worker brood cells of A. m. scutellata to explain the low mite numbers in their colonies. High infertility rates (26–27%) and percentages of unmated female offspring (39–58%) as well as low fecundity (1.7–2.2, average offspring produced) were identified as key parameters that seem to interact with one another during different seasons to suppress mite reproduction in A. m. scutellata colonies. We also identified offspring mortality in both sexes and absence of male offspring as key factors accounting for the low numbers of mated daughter mites produced in A. m. scutellata colonies. These results suggest that reduced mite reproductive success could explain the slow mite population growth in A. m. scutellata colonies.


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0223236 ◽  
Author(s):  
Haftom Gebremedhn ◽  
Bezabeh Amssalu ◽  
Lina De Smet ◽  
Dirk C. de Graaf

2015 ◽  
Vol 126 ◽  
pp. 12-20 ◽  
Author(s):  
Mollah Md. Hamiduzzaman ◽  
Ernesto Guzman-Novoa ◽  
Paul H. Goodwin ◽  
Mariana Reyes-Quintana ◽  
Gun Koleoglu ◽  
...  

2014 ◽  
Vol 61 (3) ◽  
pp. 207-215 ◽  
Author(s):  
E. Zakar ◽  
A. Jávor ◽  
Sz. Kusza

2011 ◽  
Vol 54 (3) ◽  
pp. 261-268 ◽  
Author(s):  
Masoud M. Ardestani ◽  
Rahim Ebadi ◽  
Gholamhossein Tahmasbi

Apidologie ◽  
2003 ◽  
Vol 34 (4) ◽  
pp. 389-397 ◽  
Author(s):  
Ingemar Fries ◽  
Henrik Hansen ◽  
Anton Imdorf ◽  
Peter Rosenkranz

Sign in / Sign up

Export Citation Format

Share Document