scholarly journals Rearing water quality and zootechnical parameters of litopenaeus vannamei in rapid biofloc® and conventional intensive culture system

Author(s):  
V.T. Okomoda ◽  
M. Ikhwanuddin ◽  
A.S. Oladimeji ◽  
M. Najiah ◽  
K.I. Alabi ◽  
...  
2013 ◽  
Vol 50 (2) ◽  
pp. 306-319 ◽  
Author(s):  
M. MARTIN MARISCAL-LAGARDA ◽  
FEDERICO PÁEZ-OSUNA ◽  
JOSÉ LUIS ESQUER-MÉNDEZ ◽  
ILDELFONSO GUERRERO-MONROY ◽  
ALONSO-ROMO DEL VIVAR ◽  
...  

SUMMARYThe aim of this work was to test the performance of a shrimp-tomato culture system (STCS) in an arid-semiarid region (Sonora, Mexico) and to evaluate the water quality variables and phytoplankton variation of shrimp effluent and that water returning from the tomato module culture. The field study was conducted using groundwater and consisted of three circular tanks that were used for shrimp (Litopenaeus vannamei) farming and were coupled to one culture module of tomato plants (Lycopersicon esculentum). The shrimp effluent was used to irrigate the tomato plants. The yield was 11.1±0.2 kg shrimp per tank (3.9±2.0 ton ha−1) and 33.3 kg tomatoes per 45 plants (36.1±2.3 ton ha−1). During the culture, the concentrations of nutrients were (mg L−1): total N-ammonia, <0.001–0.848; N-nitrite, <0.001–1.45; N-nitrate, 5.2–172.2; dissolved reactive-P, <0.005–0.343. A total of 35 taxa belonging to three different algal classes were observed: Chlorophyta (87 to 98%), Bacilliariophyta (2 to 9%) and Cyanophyta (0–3%). This STCS allowed us to harvest the equivalent of 3.9 ton ha−1 of shrimp and 36.3 ton ha−1 of tomatoes, with a water consumption of 2.1 m3 per kg harvested of both products.


2016 ◽  
Vol 25 (1) ◽  
pp. 147-162 ◽  
Author(s):  
Gabriele Lara ◽  
Dariano Krummenauer ◽  
Paulo C. Abreu ◽  
Luís H. Poersch ◽  
Wilson Wasielesky

2021 ◽  
Vol 11 (10) ◽  
pp. 4598
Author(s):  
Umaporn Uawisetwathana ◽  
Magdalena Lenny Situmorang ◽  
Sopacha Arayamethakorn ◽  
Haniswita ◽  
Gede Suantika ◽  
...  

Shrimp is an important food source consumed worldwide. An intensive aquaculture system with overuse of feed in combination with detrimental effects from climate change are serious problems leading to mass mortality of cultured shrimp. Biofloc technology is an approach to managing water quality and controlling the disease to counter the negative side of intensive culture system; however, most of the biofloc applications are naturally formed, which could be inconsistent. In this study, we employed an established optimal ratio of microbial consortium called “ex-situ biofloc (BF)” to be used as a feed supplement in shrimp cultured in a zero-water discharged system at low salinity conditions. Three feeding groups (100%commercial pellet (C), 95%C+BF, 90%C+BF) of shrimp were cultured for six weeks. The effect of an ex-situ biofloc supplement with commercial pellet reduction showed that levels of ammonium, nitrite, nitrate and phosphate were significantly decreased in water culture. Shrimp fed with ex-situ biofloc supplement with commercial pellet reduction exhibited significantly increased shrimp weight and survival, and significantly expressed growth-related genes involving lipolysis and energy metabolism higher than those fed with 100% commercial pellet. Nutritional analysis indicated a significant increase of docosahexaenoic acid (DHA) and eicosenoic acid (C20:1) concentrations in the ex-situ biofloc supplemented shrimp. This finding revealed the potential of ex-situ biofloc to manage water quality, improve shrimp growth performance and enhance shrimp nutritional value under intensive culture at low salinity conditions. The beneficial effects of the ex-situ biofloc in shrimp culture system make it a promising alternative strategy to mitigate climate change effects leading to the sustainable production of high-quality shrimp in the future.


Sign in / Sign up

Export Citation Format

Share Document