scholarly journals Spectral analysis of eigenparameter dependent boundary value transmission problems

2014 ◽  
Vol 413 (1) ◽  
pp. 482-494 ◽  
Author(s):  
Ekin Uğurlu ◽  
Elgiz Bairamov
2021 ◽  
Vol 26 (3) ◽  
pp. 432-443
Author(s):  
Oktay Sh. Mukhtarov ◽  
Kadriye Aydemir

This work is aimed at studying some comparison and oscillation properties of boundary value problems (BVP’s) of a new type, which differ from classical problems in that they are defined on two disjoint intervals and include additional transfer conditions that describe the interaction between the left and right intervals. This type of problems we call boundary value-transmission problems (BVTP’s). The main difficulty arises when studying the distribution of zeros of eigenfunctions, since it is unclear how to apply the classical methods of Sturm’s theory to problems of this type. We established new criteria for comparison and oscillation properties and new approaches used to obtain these criteria. The obtained results extend and generalizes the Sturm’s classical theorems on comparison and oscillation.


2008 ◽  
Vol 202 (2) ◽  
pp. 608-619 ◽  
Author(s):  
Omar Belhamiti ◽  
Rabah Labbas ◽  
Keddour Lemrabet ◽  
Ahmed Medeghri

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Ekin Uğurlu ◽  
Elgiz Bairamov

A singular dissipative fourth-order differential operator in lim-4 case is considered. To investigate the spectral analysis of this operator, it is passed to the inverse operator with the help of Everitt's method. Finally, using Lidskiĭ's theorem, it is proved that the system of all eigen- and associated functions of this operator (also the boundary value problem) is complete.


Author(s):  
Bilender Allahverdiev ◽  
Hüseyin Tuna

In this paper, we study some spectral properties of the one-dimensional Hahn-Dirac boundary-value problem, such as formally self-adjointness, the case that the eigenvalues are real, orthogonality of eigenfunctions, Greens function, the existence of a countable sequence of eigenvalues, eigenfunctions forming an orthonormal basis of L2w,q ((w0. a): E).


Sign in / Sign up

Export Citation Format

Share Document