scholarly journals Approximate analytical solutions of nonlinear differential equations using the Least Squares Homotopy Perturbation Method

2017 ◽  
Vol 448 (1) ◽  
pp. 401-408 ◽  
Author(s):  
Constantin Bota ◽  
Bogdan Căruntu
2017 ◽  
Vol 21 (4) ◽  
pp. 1843-1846 ◽  
Author(s):  
Zhen-Jiang Liu ◽  
Magaji Adamu ◽  
Enoch Suleiman ◽  
Ji-Huan He

Homotopy perturbation method is combined with Laplace transformation to obtain approximate analytical solutions of non-linear differential equations. An example is given to elucidate the solution process and confirm reliability of the method. The result indicates superiority of the method over the conventional homotopy perturbation method due its flexibility in choosing its initial approximation.


The homotopy perturbation method (HPM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the homotopy perturbation method in comparison with the previous ones in solving heat transfer problems. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. A clear conclusion can be drawn from the numerical results that the HPM provides highly accurate numerical solutions for nonlinear differential equations.


2011 ◽  
Vol 66 (1-2) ◽  
pp. 87-92 ◽  
Author(s):  
Mehmet Ali Balcı ◽  
Ahmet Yıldırım

In this study, we used the homotopy perturbation method (HPM) for solving fractional nonlinear differential equations. Three models with fractional-time derivative of order α, 0<α <1, are considered and solved. The numerical results demonstrate that this method is relatively accurate and easily implemented.


2010 ◽  
Vol 65 (1-2) ◽  
pp. 65-70
Author(s):  
Changbum Chun

AbstractIn this paper, we present an efficient modification of the homotopy perturbation method by using Chebyshev’s polynomials and He’s polynomials to solve some nonlinear differential equations. Some illustrative examples are given to demonstrate the efficiency and reliability of the modified homotopy perturbation method.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Hector Vazquez-Leal ◽  
Arturo Sarmiento-Reyes ◽  
Yasir Khan ◽  
Uriel Filobello-Nino ◽  
Alejandro Diaz-Sanchez

The fact that most of the physical phenomena are modelled by nonlinear differential equations underlines the importance of having reliable methods for solving them. This work presents the rational biparameter homotopy perturbation method (RBHPM) as a novel tool with the potential to find approximate solutions for nonlinear differential equations. The method generates the solutions in the form of a quotient of two power series of different homotopy parameters. Besides, in order to improve accuracy, we propose the Laplace-Padé rational biparameter homotopy perturbation method (LPRBHPM), when the solution is expressed as the quotient of two truncated power series. The usage of the method is illustrated with two case studies. On one side, a Ricatti nonlinear differential equation is solved and a comparison with the homotopy perturbation method (HPM) is presented. On the other side, a nonforced Van der Pol Oscillator is analysed and we compare results obtained with RBHPM, LPRBHPM, and HPM in order to conclude that the LPRBHPM and RBHPM methods generate the most accurate approximated solutions.


Sign in / Sign up

Export Citation Format

Share Document