scholarly journals The orthogonal Lie algebra of operators: Ideals and derivations

2020 ◽  
Vol 489 (1) ◽  
pp. 124134
Author(s):  
Qinggang Bu ◽  
Sen Zhu
Author(s):  
Songpon Sriwongsa

Let [Formula: see text] be a finite commutative ring with identity. In this paper, we give a necessary condition for the existence of an orthogonal decomposition of the special linear Lie algebra over [Formula: see text]. Additionally, we study orthogonal decompositions of the symplectic Lie algebra and the special orthogonal Lie algebra over [Formula: see text].


Author(s):  
Vladimir F. Molchanov ◽  
Svetlana V. Tsykina

The basic notion of the Berezin quantization on a manifold M is a correspondence which to an operator A from a class assigns the pair of functions F and F^♮ defined on M. These functions are called covariant and contravariant symbols of A. We are interested in homogeneous space M=G/H and classes of operators related to the representation theory. The most algebraic version of quantization — we call it the polynomial quantization — is obtained when operators belong to the algebra of operators corresponding in a representation T of G to elements X of the universal enveloping algebra Env g of the Lie algebra g of G. In this case symbols turn out to be polynomials on the Lie algebra g. In this paper we offer a new theme in the Berezin quantization on G/H: as an initial class of operators we take operators corresponding to elements of the group G itself in a representation T of this group. In the paper we consider two examples, here homogeneous spaces are para-Hermitian spaces of rank 1 and 2: a) G=SL(2;R), H — the subgroup of diagonal matrices, G/H — a hyperboloid of one sheet in R^3; b) G — the pseudoorthogonal group SO_0 (p; q), the subgroup H covers with finite multiplicity the group SO_0 (p-1,q -1)×SO_0 (1;1); the space G/H (a pseudo-Grassmann manifold) is an orbit in the Lie algebra g of the group G.


2018 ◽  
Vol 18 (2) ◽  
pp. 237-263 ◽  
Author(s):  
Christian Autenried ◽  
Kenro Furutani ◽  
Irina Markina ◽  
Alexander Vasiľev

Abstract The metric approach to studying 2-step nilpotent Lie algebras by making use of non-degenerate scalar products is realised. We show that a 2-step nilpotent Lie algebra is isomorphic to its standard pseudo-metric form, that is a 2-step nilpotent Lie algebra endowed with some standard non-degenerate scalar product compatible with the Lie bracket. This choice of the standard pseudo-metric form allows us to study the isomorphism properties. If the elements of the centre of the standard pseudo-metric form constitute a Lie triple system of the pseudo-orthogonal Lie algebra, then the original 2-step nilpotent Lie algebra admits integer structure constants. Among particular applications we prove that pseudo H-type algebras have bases with rational structure constants, which implies that the corresponding pseudo H-type groups admit lattices.


2009 ◽  
Vol 20 (03) ◽  
pp. 339-368 ◽  
Author(s):  
MINORU ITOH

This paper presents new generators for the center of the universal enveloping algebra of the symplectic Lie algebra. These generators are expressed in terms of the column-permanent and it is easy to calculate their eigenvalues on irreducible representations. We can regard these generators as the counterpart of central elements of the universal enveloping algebra of the orthogonal Lie algebra given in terms of the column-determinant by Wachi. The earliest prototype of all these central elements is the Capelli determinants in the universal enveloping algebra of the general linear Lie algebra.


2001 ◽  
Vol 16 (07) ◽  
pp. 1199-1225 ◽  
Author(s):  
A. J. MACFARLANE ◽  
HENDRYK PFEIFFER ◽  
F. WAGNER

To provide tools, especially L-operators, for use in studies of rational Yang–Baxter algebras and quantum integrable models when the Lie algebras so (N)(bn, dn) or sp (2n)(cn) are the invariance algebras of their R matrices, this paper develops a presentation of these Lie algebras convenient for the context, and derives many properties of the matrices of their defining representations and of the ad-invariant tensors that enter their multiplication laws. Metaplectic-type representations of sp (2n) and so (N) on bosonic and on fermionic Fock spaces respectively are constructed. Concise general expressions (see (5.2) and (5.5) below) for their L-operators are obtained, and used to derive simple formulas for the T operators of the rational RTT algebra of the associated integral systems, thereby enabling their efficient treatment by means of the algebraic Bethe ansatz.


1978 ◽  
Vol 21 (1) ◽  
pp. 125-126
Author(s):  
Frank Servedio

A form P of degree r is a homogeneous polynomial in k[Yi, …, Yn] on kn, k a field; Yi are the coordinate functions on kn. Let V(n, r) denote the k-vector space of forms of degree r. Mn(k) = Endk(kn) has canonical Lie algebra structure with [A, B] = AB-BA and it acts as a k-Lie Algebra of kderivations of degree 0 on k[Yi, …, Yn] defined by setting D(A)Y= Yo(-A) for A∈Endk(kn), Y∈V(n,l) = Homk(kn, k) and extending as a k-derivation. Define the orthogonal Lie Algebra, LO(P), of P by LO(P) =


Sign in / Sign up

Export Citation Format

Share Document