Static and oscillation superimposed ring compression tests with structured and coated tools for Sheet-Bulk Metal Forming

2020 ◽  
Vol 55 ◽  
pp. 78-86 ◽  
Author(s):  
Bernd-Arno Behrens ◽  
Alexander Meijer ◽  
Dominic Stangier ◽  
Sven Hübner ◽  
Dirk Biermann ◽  
...  
Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 617 ◽  
Author(s):  
Bernd-Arno Behrens ◽  
Sven Hübner ◽  
Philipp Müller ◽  
Hans-Bernward Besserer ◽  
Gregory Gerstein ◽  
...  

A new sheet-bulk metal forming process for the production of bulk components out of a flat sheet has been developed. Superimposed oscillation has been applied to the new process. By this means, process limits regarding better mould filling were expanded, and forming forces could be reduced. In order to investigate the effects of superimposed oscillation on material behaviour, plane strain and ring compression tests were carried out. The superimposed oscillated plane strain compression test showed a reduction in biaxial flow stress and thus in plastic work. Furthermore, reduced friction and roughness were verified in ring compression tests using superimposed oscillation.


2015 ◽  
Vol 794 ◽  
pp. 89-96 ◽  
Author(s):  
S. Koch ◽  
Milan Vucetic ◽  
Sven Hübner ◽  
Anas Bouguecha ◽  
Bernd Arno Behrens

The new manufacturing technology sheet-bulk metal forming (SBMF) combines the sheet metal forming and bulk metal forming techniques. At the Institute of Forming Technology and Machines (IFUM), a new multistage SBMF process is being developed. In order to reduce the friction and improve the dimensional accuracy of the parts, superimposed oscillation is used within the new SBMF process. SBMF processes allow the manufacturing of solid metal components out of flat steel. To analyse the effect of friction on the superimposed oscillating SBMF process more precisely, superimposed oscillating and non-oscillating ring compression tests at room temperature were carried out. Like the semi-finished products for SBMF process the ring specimens were cut out of a sheet plate by water jet cutting. A new tool system with an integrated hydraulic oscillation system was developed for superimposed oscillating compression of the ring specimens. This tool system enables the absorption of the forming force and displacement stroke of the ring specimen during the ring compression test. After the practical experiments, the force profiles of superimposed oscillating and of non-oscillating process were compared. The influence of the frequency on the surface roughness of ring specimens was investigated. Furthermore, the tribological conditions of the superimposed oscillating ring compression test were analyzed.


2020 ◽  
Vol 4 (2) ◽  
pp. 41
Author(s):  
Bernd-Arno Behrens ◽  
Wolfgang Tillmann ◽  
Dirk Biermann ◽  
Sven Hübner ◽  
Dominic Stangier ◽  
...  

Producing complex sheet metal components in fewer process steps motivated the development of the innovative forming process called sheet-bulk metal forming (SBMF). In this process, sheet metal forming and bulk-metal forming are combined to create a unique forming process in which a component with external and internal gearing is produced in three production steps. However, the high degrees of deformation that occur using high-strength steels and the number of different process steps result in high process forces, strongly limiting the service life of tools. To reduce the forming force during SBMF processes, tool and process modifications were investigated. Therefore, plane-strain compression tests were conducted to examine the influence of a CrAlN PVD coating and tailored surfaces produced by high-feed milling (HF) of tool-active elements on the material flow of the specimens. In addition to the tool-sided modifications, the influence of an oscillation overlay during the forming process was investigated. Based on the results of the compression tests, the surfaces of the active tool elements of the SBMF process were modified in order to transfer the basic experimental results to the production of a functional component. The friction is thus adapted locally in the SBMF process.


Author(s):  
Lorenzo Scandola ◽  
Christoph Büdenbender ◽  
Michael Till ◽  
Daniel Maier ◽  
Michael Ott ◽  
...  

AbstractThe optimal design of the tools in bulk metal forming is a crucial task in the early design phase and greatly affects the final accuracy of the parts. The process of tool geometry assessment is resource- and time-consuming, as it consists of experience-based procedures. In this paper, a compensation method is developed with the aim to reduce geometrical deviations in hot forged parts. In order to simplify the transition process between the discrete finite-element (FE) mesh and the computer-aided-design (CAD) geometry, a strategy featuring an equivalent surrogate model is proposed. The deviations are evaluated on a reduced set of reference points on the nominal geometry and transferred to the FE nodes. The compensation approach represents a modification of the displacement-compatible spring-forward method (DC-SF), which consists of two elastic FE analyses. The compatible stress originating the deviations is estimated and subsequently applied to the original nominal geometry. After stress relaxation, an updated nominal geometry of the part is obtained, whose surfaces represent the compensated tools. The compensation method is verified by means of finite element simulations and the robustness of the algorithm is demonstrated with an additional test geometry. Finally, the compensation strategy is validated experimentally.


CIRP Annals ◽  
2011 ◽  
Vol 60 (1) ◽  
pp. 283-286 ◽  
Author(s):  
M. Merklein ◽  
J. Koch ◽  
S. Opel ◽  
T. Schneider

2012 ◽  
Vol 504-506 ◽  
pp. 969-974 ◽  
Author(s):  
Harald Hetzner ◽  
Stephan Tremmel ◽  
Sandro Wartzack

In sheet bulk metal forming, locally adapted friction properties of the contact tool/workpiece are an appropriate means for the targeted enhancement of the material flow, enabling an improved form filling and lowered forming forces. However, the implementation of desirable friction conditions is not trivial. And further, friction is inseparably linked to wear and damage of the contacting surfaces. This calls for a methodological approach in order to consider tribology as a whole already in the early phases of process layout, so that tribological measures which allow fulfilling the requirements concerning local friction and wear properties of the tool surfaces, can already be selected during the conceptual design of the forming tools. Thin tribological coatings are an effective way of improving the friction and wear properties of functional surfaces. Metal-modified amorphous carbon coatings, which are still rather new to the field of metal forming, allow tackling friction and wear simultaneously. Unlike many other types of amorphous carbon, they have the mechanical toughness to be used in sheet bulk metal forming, and at the same time their friction properties can be varied over wide ranges by proper choice of the deposition parameters. Based on concrete research results, the mechanical, structural and special tribological properties of tungsten-modified hydrogenated amorphous carbon coatings (a-C:H:W) are presented and discussed against the background of the tribological requirements of a typical sheet bulk metal forming process.


Lubricants ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 42 ◽  
Author(s):  
Marco Lüchinger ◽  
Igor Velkavrh ◽  
Kerstin Kern ◽  
Michael Baumgartner ◽  
Stefan Klien ◽  
...  

2015 ◽  
Vol 651-653 ◽  
pp. 1153-1158 ◽  
Author(s):  
Bernd Arno Behrens ◽  
Anas Bouguecha ◽  
Milan Vucetic ◽  
Sven Hübner ◽  
Daniel Rosenbusch ◽  
...  

Sheet-bulk metal forming is a manufacturing technology, which allows to produce a solid metal component out of a flat sheet. This paper focuses on numerical and experimental investigations of a new multistage forming process with compound press tools. The complete process sequence for the production of this solid metal component consists of three forming stages, which include a total of six production techniques. The first forming stage includes deep drawing, simultaneous cutting and following wall upsetting. In the second forming stage, flange forming combined with cup bottom ironing takes place. In the last stage of the process sequence, the component is sized. To investigate and to improve process parameters such as plastic strain distribution, resulting dimensions and process forces, FEA is performed. Based on these results the developed process is designed.


Sign in / Sign up

Export Citation Format

Share Document