tribological properties
Recently Published Documents


TOTAL DOCUMENTS

7021
(FIVE YEARS 2067)

H-INDEX

88
(FIVE YEARS 16)

Wear ◽  
2022 ◽  
Vol 492-493 ◽  
pp. 204219
Author(s):  
Ruixuan Wu ◽  
Chenfei Song ◽  
Haihong Wu ◽  
Bin Lv ◽  
Yanyan Zhang ◽  
...  

2022 ◽  
Vol 167 ◽  
pp. 107395
Author(s):  
Qipeng Huang ◽  
Xiaoliang Shi ◽  
Yawen Xue ◽  
Kaipeng Zhang ◽  
Yangyang Gao ◽  
...  

2022 ◽  
Vol 167 ◽  
pp. 107396
Author(s):  
Wei Yin ◽  
Hongyu Lu ◽  
Yelong Zheng ◽  
Yu Tian

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yanhong Yan ◽  
Chengwen Yang ◽  
Yanfei Zhou ◽  
Wenbin Dong ◽  
Pengjuan Yan ◽  
...  

Purpose Previously, the effect of pore-forming agents on the properties of pore size and morphology was studied. In this paper, we determine the optimal combination of parameters by tensile strength and perform tribological tests with optimal combination of parameters. Design/methodology/approach In this paper, porous polyimide (PI) materials were fabricated using vacuum hot molding technology. The orthogonal experiment was designed to test the mechanical properties of porous PI materials with the process parameters and the content of pore-forming agent as the changing factors. The porous PI oil-bearing materials were obtained by vacuum immersion, and tribological test were carried out. Findings The results showed that porous PI oil-bearing materials are suitable for low-speed and low-load conditions. The actual value of the friction coefficient basically match with the theoretical value of the regression analysis, and the errors of the friction coefficient are within 10% and 3%, respectively, which proves that the method used in the study is feasible for the friction coefficient prediction. Originality/value In this paper, we have produced a new porous oil-bearing material with good tribological properties. This study can effectively predict the friction coefficient of PI porous material.


2022 ◽  
pp. 095400832110665
Author(s):  
Lian Liu ◽  
Haitao Duan ◽  
Wen Zhan ◽  
Shengpeng Zhan ◽  
Dan Jia ◽  
...  

Exposing engineering plastics to UV irradiation can easily destroy the original molecular structure of the materials and consequently affect their tribological properties. This study investigated the effects of UV irradiation on the molecular structure of typical engineering plastics, such as polytetrafluoroethylene (PTFE) and polyether ether ketone (PEEK), and on their tribological properties under heavy loads (20 MPa). The surface morphology results showed that the appearance of PEEK changed significantly under UV irradiation. However, the change in PTFE was negligible. Under micromorphology, the processing lines of the two materials gradually became lighter with increasing UV irradiation time. The resulting infrared spectra showed that the molecular chains of both materials were broken, and new functional groups were formed under UV irradiation. Tribology testing demonstrated that with prolonged UV irradiation, the average PTFE coefficient of friction remained relatively stable, whereas that of PEEK was approximately 0.55. As the UV irradiation time increased, the wear rate of PTFE increased significantly, whereas that of PEEK showed no significant change.


Author(s):  
Hema C. R. Moreira ◽  
Jorge A. B. Oliveira ◽  
Neftali L. V. Carreño ◽  
Ricardo M. Silva ◽  
Irene T. S. Garcia ◽  
...  

Abstract Electrodeposited ZnNi coatings are widely used to improve the corrosion resistance of steel substrates, but their tribological properties are also relevant for loaded contacts under relative motion. This work investigates the hypothesis of improving tribological properties of electrodeposited ZnNi coatings via dispersion of niobium pentoxide nanoparticles (1g/L) in the electrolytic bath. The niobium pentoxide nanoparticles were produced via hydrothermal synthesis assisted by microwave. The surface morphology and chemical composition of the coatings were analysed by scanning electron microscopy coupled with X-ray dispersive energy, X-ray diffraction and X-ray photoelectron spectroscopy. The tribological performance of the coatings was assessed using dry reciprocating ball-on-flat tests at normal loads between 3 and 6 N. The use of niobium pentoxide nanoparticles resulted in significantly denser coatings, with some Nb incorporated in the coated surfaces. Under the lowest normal load, all coated specimens showed relatively low friction (~0.2) and negligible damag. As the normal load increased, the coating produced using niobium pentoxide nanoparticles showed stronger adherence, while conventional ZnNi coating showed increased friction and spalling for the highest load. It is believed that the Nb2O5 nanoparticles increased the number of sites for heterogeneous nucleation, refining the microstructure, so that tougher and more adherent coatings were produced.


Sign in / Sign up

Export Citation Format

Share Document